TASC8/KASC15 | Slides at hyad.es/talks
Joel Ong
Hubble Fellow, Univ. of Hawaiʻi at Mānoa
July 15, 2024
(cf. Felix Ahlborn’s talk after this)
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation
in two zones (core vs. envelope).
Cumulative sensitivity \(b(r)\)
pure g-mode pure p-mode
e.g. Mosser et al. 2012, 2015, 2017…; Gehan et al. 2018, 2021
\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 2 \nu^2}\]
From Huber et al. 2013
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation
in two zones (core vs. envelope).
Cumulative sensitivity \(b(r)\)
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Even the most p-dominated mixed modes
are sensitive to core rotation!
Cumulative sensitivity \(b(r)\)
From Huber et al. 2013
Caveats:
Model-dependence? Short Cadence?
Amplitudes? Linewidths?
Key prediction: apparent inclination angle
should vary from multiplet to multiplet.
Application to Kepler-56 suggests internal
misalignment.
Follow-up Rossiter-McLaughlin RV measurements
may further constrain geometry.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
\(\forall \ell, \exists (2\ell + 1) \times
(2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation
relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] =
-i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell,
-\ell + 1 \ldots \ell - 1, \ell).\)
\[\small\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]
For fixed \(m\) (to leading order):
\[\left(-\mathbf{\Omega}_0^2 + 2 \omega m \mathbf{R} + \omega^2 \mathbf{\Delta}\right)\mathbf{c} = 0\]
For fixed \(n\) (to leading order):
\[(-\omega_0^2 \mathbb{1}_{2\ell+1} + 2 \omega \mathbf{J}_z R_{n,n} + \omega^2 \mathbb{1}_{2\ell+1})\mathbf{y} = 0\]
\[\vec{\xi}_{n\ell m}(r, \theta, \varphi) = \vec{\xi}_{n\ell}(r) Y_\ell^m(\theta, \phi) \iff \underbrace{\tilde{R}_{n, n', m, m'} = R_{n,n'} J_{m,m'}}_{\text{this is a }\textbf{tensor product}!}\]
\[\implies \left(-\mathbf{\Omega_0}^2 \otimes \mathbb{1}_{2\ell+1} + 2 \omega \underbrace{\mathbf{R} \otimes \mathbf{J}_z}_{\tilde{\mathbf{R}}} + \omega^2 \mathbf{\Delta} \otimes \mathbb{1}_{2\ell+1}\right)\mathbf{x} = 0\]
Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i
\mathbf{e}_i\).
\[\small \begin{aligned} \mathbf{R}_{n\ell, n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]
\[ \boxed{\tilde{\mathbf{R}} = \int \mathbf{K}\otimes\left(\Omega_\text{rot}(r)\ \hat{\mathbf{n}}\cdot \vec{\mathbf{J}}\right)\ \mathrm{d}r} \]
\(\implies\) For each mode, AM
matrix is
specified by usual vector addition.
We only assume that the pure p- and g-mode
solutions
are separately amenable to separation of
variables;
the mixed-mode eigenfunctions need not be.
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\tilde{\mathbf{R}}_\pi} & 0 \\ 0 & {\color{forestgreen}\tilde{\mathbf{R}}_\gamma}\end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right)\mathbf{x} = 0. \]
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
\(\beta = 0\)
\(\beta = {\pi\over10}\)
\(\beta = {\pi\over2}\)
\(\beta = \pi\)