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Modern asteroseismic data sets have negligible timing
errors, as well as well-characterised noise statistics.
These allow us to apply nonblind deconvolution
techniques from the image-processing literature.

Motivation: Window Functions in Gapped Time Series

Asteroseismic time series are not always continuous:

▶ Ground-based single-site observations suffer from daily gaps, even if data can be
taken for consecutive nights.

▶ Repeat-visit missions like the TESS CVZs suffer from annual gaps between visits.

Gaps in the time domain yield sidelobes in the frequency domain, which interfere with
mode identification and frequency fitting.
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Figure 1: Numerical demonstration of window-function sidelobes. We artificially degrade MDI radial-
velocity time series, shown in (a); data points shown in gray are deliberately omitted when computing
power spectra, resulting in a window function possessing sidelobes. This window function is illustrated
in the inset panel (orange), compared with one of a continuous time series with equivalent duration
(blue). Compared to the ground-truth power spectrum in (b), the power spectrum of the gapped time
series in (c) exhibits spurious peaks. In this case, the gaps are chosen to be separated such that the
sidelobe spacing coincides with the small separation.

Positive-Definite Deconvolution

Deconvolution of Fourier amplitudes by division in the time domain is untenable by
construction — the window function goes to zero and all information in gaps is lost.
However,

▶ Timing measurement errors are negligible: the window function is essentially
known perfectly. Given a series of exposures indexed by integers k, each with
midpoint time tk and of duration Tk, the transfer function of the unitary Fourier
transform of that time series can be computed analytically by
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▶ Suppose the true underlying signal were to comprise of intensity fluctuations Ii
from different modes, as well as some noise process N. If we suppose these {Ii}
and the noise are independent stationary stochastic processes, so that e.g. ⟨IiIj⟩ =
0, then the expectation value of the power spectrum is such that
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Thus, we may deconvolve the PSD against |Ŵ|2, rather than deconvolving the com-
plex Fourier amplitudes against Ŵ.

Notably, time-domain white noise is additive before, rather than after, convolution
against frequency-domain window function =⇒ no noise amplification!
Unlike deconvolution against the complex Fourier amplitudes, the true deconvolved
power spectrum must be positive semidefinite. This allows us to use algorithms that
suppress signed ringing artifacts.

Numerical Schemes

We implement two distinct iterative numerical schemes:
▶ Richardson-Lucy Deconvolution: Iterative relaxation to maximum-likelihood esti-

mator for deconvolved power spectrum. Our implementation uses χ2-2dof statis-
tics, unlike the MSE metric ordinarily used for image denoising.

▶ Gold Deconvolution: Boosted solutions by Neumann series to the deconvolution
problem expressed as a Volterra integral equation, with variable relaxation. This
technique has historically been extensively used in γ-ray spectroscopy.

Our jax-accelerated implementation can
be found on GitHub:
https://github.com/parallelpro/maemae

Illustrative Results

It works!
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Figure 2: We successfully deconvolved the power spectrum shown in fig. 1(c). The left column of figures
shows results produced by Richardson-Lucy deconvolution, and the right column shows those from
Gold deconvolution. The upper row of figures shows the raw results of the deconvolution procedure,
while the lower row shows results at the effective resolution of an equivalent continuous time series.

▶ Both of our deconvolution schemes yield results that (qualitatively) agree.
▶ Superresolution is spurious (exact deconvolution would have yielded δ-functions)

but can be ameliorated with “reconvolution” step against effective window func-
tion, a la Bolton & Schlegel (2010)

Key Takeaways

▶ Sidelobes not completely suppressed, but good enough for mode identification!
▶ Already used this in production — e.g. Li et al. (2025); Kjeldsen et al. (in review)
▶ Forthcoming paper to examine systematics in other tasks (e.g. rotational splittings,

classical pulsators) via hare-and-hounds exercise.
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