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We present techniques for performing structure
inversions parameterised by the acoustic and buoyant
radial coordinates.

Motivation: Natural Coordinates

Structural and dynamical perturbations to a star perturb its normal-mode frequencies
through integral expressions that may be written in the form

δωi ∼
∑

k

∫
Ki,k(r) δfk(r) dr. (1)

However, the sensitivity of these response kernels is not uniformly distributed with
respect to the physical radial coordinate, r.
Ong et al. (2024) showed that, for rotational kernels in particular, one might uniformly
redistribute the sensitivity of these kernels by transforming to a structure-dependent
coordinate system.
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Figure 1: Redistribution to uniform sensitivity by a coordinate transformation, demonstrated using ro-
tational kernels for the ℓ = 1, n = 6 p-mode of a series of red-giant stellar models. The left panel shows
these kernels as parameterised by the physical radial coordinate, as in eq. (1). The right panel shows
these same kernels, but rescaled for integration against the acoustic radial coordinate, eq. (2). From
Ong et al. (2024).

There are two natural coordinate systems thatmay be used for this purpose, depending
on the character of the mode under consideration.

▶ For p-modes, we may use the acoustic
radial coordinate:

t(r) =
∫ r

0

dr′
cs
. (2)

▶ For g-modes, we may use the buoyant
radial coordinate:

b(r) =
∫ r

r1

|N|
r dr. (3)

Ong et al. (2024) successfully applied this technique to rotational inversion. Can we do
the same for inversions for stellar structure?

Lagrangian vs. Eulerian Kernels

Consider two stellar structures — a ”reference” structure with sound-speed profile c1(r),
and a ”target” structure with sound-speed profile c2(r). The standard set of inversion
kernels in eq. (1) relate frequency perturbations δω to Eulerian structural differences:
e.g.

δc(r) = c2(r)− c1(r) (4)
where differences are taken at the same physical radius in both the reference and
target structure. Homology transformations may permit rescaling to e.g. matching
fractional physical radius, instead.
Conversely, we define the Lagrangian structural differences as being differences taken
at the same value of the structure-dependent coordinate. For example:

δc̃(t) = c2(t−1
2 (t))− c1(t−1

1 (t)). (5)
The two are related as

δc̃(t(r)) = δc(r)− dc
dt

∫
δt(r)
δc(r′)δc(r

′)dr′ (6)

The second term — with an integral taken over a functional derivative — is required
to describe contributions to δc̃(t(r)) arising from perturbations to c(r) modifying t(r)
itself.
[ Compare this with how Eulerian f ′ and Lagrangian δf are related as δf = f ′ + ξ · ∇f ]
This in turn means that the kernels for Lagrangian sound-speed differences, K̃c, are
related to the Eulerian kernels Kc of eq. (1) as

Kc(r) =
dt
drK̃c(t(r))−

∫ dc
dt(r

′)
δt(r′)
δc(r)

(
dt
drK̃c(t(r′))

)
dr′ . (7)

Solving for K̃c from eq. (7) (a Volterra integral equation) is not trivial, but may be done
numerically. More general expressions (summing over indepedent perturbations) are
required to construct cross-term kernels, e.g. K̃ρ,cs.

Numerical Results: p-modes

We implement solutions to eq. (7) using the method of Neumann series, accelerated
using jax (Bradbury et al., 2018), shown applied to the c2

s, ρ kernel pair in fig. 2. More-
over, the functional derivative in eq. (7) may be constructed either to maintain a fixed
total acoustic radius, or to permit it to vary under perturbations to the sound speed.
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Figure 2: Lagrangian c2
s and ρ kernels for the ℓ = 1, np = 16 p-mode of Model S. The blue dotted curve

shows the Eulerian kernels, scaled by the integral measure dr
dt = cs. The orange dash-dotted curve shows

solutions to eq. (7) with the functional derivative computed such that acoustic radius is unchanged by
the perturbation, while the gray curve shows solutions with a free boundary.

We found that only the free-boundary kernels permitted Lagrangian quantities to be
recovered in a mock inversion exercise — the fixed-boundary kernels have shapes that
prevent OLA localisation kernels from being constructed.
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Figure 3: We successfully performed inversions for Lagrangian sound-speed differences in a model-
model comparison. (a) OLA sound-speed inversions using our modified kernels; the recovered sound-
speed differences agree better with the Lagrangian than Eulerian differences. (b) In order to compare
stellar models with different acoustic radii, the reference model frequencies, and sound speed, had to
be scaled by an assumed value of the (notionally unknown) reference acoustic radius. However, both the
ground-truth and inversion results transform in the same way using different choices of this assumed
acoustic radius.

Numerical Results: g-modes

We apply eq. (7) (generalised to the buoyancy radial coordinate) to the N2, ρ kernel pair,
shown in fig. 4. Unlike the Eulerian picture, the Lagrangian N2 kernels are zero-mean.
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Figure 4: Lagrangian N2 and ρ kernels for the ℓ = 1, ng = 10 g-mode of the “reference” model from Vanlaer
et al. (2023). Line colours and styles have the same meanings as in fig. 2.

Eulerian inversions with g-modes are plagued by nonlinear phenomena (Vanlaer et al.,
2023); one symptom of this is that the kernels of the target and reference model ap-
pear different when plotted on the same axes. This does not affect buoyancy-radius
Lagrangian kernels; they may well be the only meaningful path to g-mode inversions.
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