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We derive expressions for small separations that
remain usable on the red giant branch,
where existing ones fail catastrophically.
These allow us to interpret newly discovered
observational features of C-D diagrams.

Motivation: An Asteroseismic Catastrophe

The small frequency separation δν02(n) = νn,ℓ=0 − νn−1,ℓ=2 is used, in analysing main-sequence
p-mode pulsators, as a diagnostic of interior structure. This is because the separation ratio

r02(n) =
δν02(n)
∆ν1(n)

=
νn,ℓ=0 − νn−1,ℓ=2
νn,ℓ=1 − νn−1,ℓ=1

∼ 1
π
(δ2(ω)− δ0(ω)) , (1)

depends only on the inner phase functions δℓ(ω) — see e.g. Roxburgh (2005).
On the main sequence, this relates to interior structure as (e.g. Tassoul, 1990)

rℓ,ℓ+2 ∼ −
2ℓ + 3
π2ν

[∫ R

0

1
r
dcs
dr dr− cs(R)

R

]
+O

(
1
ν2

)
. (2)

However, this expression does not work on the red giant branch!
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Figure 1: Small separation ratios r02 for an illustrative MESA evolutionary track. Values computed with mode
frequencies (averaged over modes near νmax) are shown in blue, while values computed using the integral expression
of Tassoul (1990), eq. (2), are shown in orange. The actual small separation ratios are all much less than unity.

Clearly, eq. (2) fails when applied to RGB structure models.
▶ How do we resolve this apparent catastrophe?
▶ Conversely: what do the small separations in red giants actually tell us?

Revised Asymptotic Analysis

Adopting the notation of Roxburgh & Vorontsov (1994), the wavefunctions are parameterised as
ξr ∼ aℓ(ω, t)jℓ(ωt− δℓ(ω, t)), with δℓ(ω) ≡ lim

t→T
δℓ(ω, t); (3)

t(r) =
∫ r

0 (1/cs)dr is the acoustic radius and jℓ is the first spherical Bessel function at degree ℓ.
Equation (2) comes from asymptotic approximation to these Bessel functions at large argument, s.t.

δℓ(ω) +
π

2 ∼ arctan

[
1
ω

{
A0 + ℓ(ℓ + 1)

(
Aℓ −

1
2T

)}]
+ arctan

[
ℓ(ℓ + 1)

2ωT

]
+O

(
1
ω2

)
; (4)

here, Aℓ is the integral of eq. (2), and

A0 ∼
1
2

∫ T

0

(
4πGρ− N2

)
dt. (5)

▶ The catastrophe of fig. 1 results from the failure of a small-angle approximation.
In main-sequence stars, eq. (2) is obtained where A0 ≪ 2πνmax. In red giants, where A0 ≫ 2πνmax,
we instead obtain

r02,asy ∼
1
ωT ∼

∆ν

νmax
. (6)

(but the full expression describing transition between the two regimes is more complicated...)
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Figure 2: Comparison of revised asymptotic expressions (gray, with dark gray showing further modification to
accommodate π modes per Ong & Basu 2020) against numerical results from the same evolutionary track as fig. 1.
Dashed line shows limiting behaviour as A0 ≫ 2πνmax. The featured marked in red corresponds to the kink in the C-D
diagram that was recently discovered observationally (see Claudia Reyes’ poster).

Our full revised asymptotic expression for r02 reproduces at least the qualitative behaviour of nu-
merical mode frequencies. Residual deviations from it are the result of higher-order contributions
from the Brunt-Väisälä frequency, such as arising from acoustic glitches, and remain indicative of
internal structural features.

Interpreting Observed C-D Diagrams

We apply this analysis to explain a newly-observed kink in the C-D diagram of M67 — see poster of
Claudia Reyes. Phase-function analysis of numerical eigenfunctions indicates that this kink
is caused by a structural feature near the centre of the star, affecting only the frequencies of radial
modes.
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Figure 3: Evolution of several phase functions for different stellar masses. The kink in r02 can be seen to originate from
only the radial-mode phase function δ0, and so also affects ϵp =

1
π (δ0 − α). δ2 evolves smoothly there.

The frequencies of radial modes in particular are fully described by an acoustic potential function
V0. Departures from our asymptotic expression are described by its perturbation kernels (fig. 4a).
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Figure 4: Position of convective-envelope acoustic glitch, in the acoustic potential V0, relative to averaged
perturbation kernel near νmax. Each set of curves and lines in the left panel is plotted using the same colour as the
line denoting position on the C-D diagram in the right panel.
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Figure 5: Evolution of the kernel functions, and the locations
of the convective boundary glitches, as a function of the
acoustic phase radial coordinate 2πνmaxt.

Acoustic glitches in V0 exist at convective
boundaries. Specifically, at the base of the
envelope,
▶ The C-D kink, fig. 4b, emerges when the
glitch sweeps over the innermost local
maximum of the averaged kernel, fig. 4a.

▶ The shape of this averaged kernel is ex-
tremely stable over the course of stel-
lar evolution, with respect to the acoustic
phase coordinate 2πνmaxt.

Using δ0 from earlier, the C-D diagram kink
arises when convective envelope boundary
reaches tglitch ∼ 0.35/νmax, over a large range
of possible stellar masses and ages!
▶ This kink is a sensitive observational
diagnostic of envelope overshoot; we
have now related it to internal structure.
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