We examine the asteroseismic phenomenology of stellar rotation when the direction of the rotational axis varies with radial position.

Motivation

In the shellular approximation of rotation, the angular momenta of all mass shells are assumed to be aligned. However, this may not necessarily be true, as, e.g.:

- Tidal realignment of oblique planets exerts torque on CZ (e.g. Nick Saunders's poster)
- Engulfment deposits angular momentum directly into stellar envelope

Both result in stratification of the axis of rotation!

- What are the observational signatures of this misalignment?
- How will these affect our existing rotational measurements?

Generalised rotational splitting matrices

Neglecting latitudinal differential rotation, conventional rotational multiplet components are the eigensystem of a linear operator with matrix elements

$$
\left\langle\boldsymbol{\xi}_{\ell m}, \hat{\mathcal{R}} \boldsymbol{\xi}_{\ell m^{\prime}}\right\rangle=\beta_{n \ell} \int \mathbf{J}_{z} \Omega(r) K_{n \ell}(r) \mathrm{d} r, \quad \mathbf{J}_{z}=\operatorname{diag}(-\ell, \ell+1, \ldots, \ell-1, \ell),
$$

in the basis of spherical harmonics.
\mathbf{J}_{z} is one of three basis matrices in the $\ell^{\text {th }}$ representation of $\mathfrak{s o}(3)-$ i.e. of rank $2 \ell+1-$ along with \mathbf{J}_{x} and \mathbf{J}_{y}. These satisfy commutation relations

$$
\begin{equation*}
\left[\mathbf{J}_{i}, \mathbf{J}_{j}\right]=-i \epsilon_{i j j} \mathbf{J}_{k} . \tag{2}
\end{equation*}
$$

If at each radial position r we have not only $\Omega(r)$ but in general $\boldsymbol{\Omega}(r)=\Omega(r) \hat{\mathbf{n}}(r)$, then we now need to find the eigensystem of

$$
\mathbf{R}_{n l}=\beta_{n \ell} \int K_{n \ell}(r)[\boldsymbol{\Omega}(r) \cdot \overrightarrow{\mathbf{J}}] \mathrm{d} r .
$$

Eigenvalues of this matrix are generalised multiplet splittings, and eigenvectors - forming some unitary matrix $\mathbf{U} \in \rho_{\ell}[S O(3)]$ - specify a change of basis (in spherical harmonics) from the reference coordinate system, to those of the normal modes. In particular, $\hat{\mathbf{n}} \cdot \overrightarrow{\mathbf{J}}=\mathbf{d}^{\ell} \mathbf{J}_{\mathbf{z}} \mathbf{d}^{\ell}, \dagger$ where \mathbf{d}^{ℓ} is Wigner's d-matrix: $\Longrightarrow \delta \omega_{m} \sim m \delta \omega_{m=1}$ even with misalignment.

Two-Zone Model of Misalignment

Consider a rotating core (with constant $\Omega_{\text {core }}$) aligned with the z-axis, and an envelope (constant $\Omega_{\text {env }}$) aligned with unit vector \hat{n}; the boundary between the two sits at radius r_{0}. We define a relative sensitivity parameter α for a given multiplet, and misalignment angle β, as

$$
\alpha_{n \ell}=\int_{0}^{r_{0}} K_{n \ell}(r) \mathrm{d} r, \quad \cos \beta=\mathbf{e}_{z} \cdot \hat{\mathbf{n}} .
$$

Effective rotational splitting is then

$$
\delta \omega_{\mathrm{rot}, n \ell} \sim m \beta_{n \ell}\left|\Omega_{\mathrm{eff}}\right|,
$$

where $\Omega_{\text {eff }}$ is found from vector addition (fig. 1). By the triangle inequality, we have that $\left|\boldsymbol{\Omega}_{\text {eff }} \leq \alpha\right| \boldsymbol{\Omega}_{\text {corel }}|+(1-\alpha)| \Omega_{\text {env }} \mid$.

- Misalignment systematically reduces rotational splittings compared to the aligned case!
- Amount depends on both misalignment angle β and sensitivity α (fig. 2).

(5)

$\alpha \Omega_{\text {core }}$

(6)

Figure 1: Geometric picture of misaligned rotational splittings as addition of angular momentum vectors

Figure 2: Suppression of rotational splitting in presence of misalignment. Left: Schematic representation of rotational spliting when $\Omega_{\text {corr }}=\Omega_{\text {env }}$ with cos $\beta=0$, showing dependence on α. Intermediate values of α between 0 and 1 reduce the splitting width. Right: The amount of reduction depends on the value of β.
The apparent inclination implied by the relative amplitude of multiplet components will also depend on α and β (fig. 3).

Figure 3: Dependence of the apparent inclination angle on α and β. Left: Numerical dependence on α and β of an effective β (as in fig. 1) associated with the multiplet. Right: Relationship between $i_{\text {corer }} i_{\text {enven }}$ and $i_{\text {eff }}$ on a spherical triangle. Note the geometrical degeneracy owing to an underspecified projection angle γ.

Mode Coupling in the Two-Zone Model

If these zones coincide with propagation regions of a mixed-mode solar-like oscillator, rotation interacts with mode coupling via a Quadratic Hermitian Eigenvalue Problem. The unitary matrices \mathbf{d}^{ℓ} modify this coupling as
$\left(\left[\begin{array}{cc}-\boldsymbol{\Omega}_{p}^{2} & \mathbf{A} \\ \mathbf{A}^{\dagger} & -\boldsymbol{\Omega}_{g}^{2}\end{array}\right] \otimes \mathbb{I}_{2 \ell+1}+\omega\left[\begin{array}{cc}\mathbf{R}_{p} \otimes \mathbf{d}^{\ell} \mathbf{J}_{z} \mathbf{d}^{\ell, \dagger} & 0 \\ 0 & \mathbf{R}_{g} \otimes \mathbf{J}_{z}\end{array}\right]+\omega^{2}\left[\begin{array}{cc}\mathbb{I}_{p} & \mathbf{D} \\ \mathbf{D}^{\dagger} & \mathbb{I}_{g}\end{array}\right] \otimes \mathbb{I}_{2 \ell+1}\right) \mathbf{c}=0$,
where \otimes is the tensor (Kronecker) product.

- Upon misalignment, mixed modes become linear combinations of p - and g-modes with different m_{p} and m_{g}.
- Since $\alpha=\frac{\zeta}{2-\zeta}$, different mixing fractions ζ will yield different apparent inclinations!
- Suggests reinterpretation of existing inclination measurements made using mixed modes (e.g. Kepler-56: Huber et al., 2013)

Near-degeneracy Effects: Modified Avoided Crossings
 Modes of $m_{p} \neq m_{g}$ may couple to each other, depending on the amount of misalignment. The

 morphology of rotational avoided crossings is likewise modified (fig. 4).

$\Omega_{\text {core }} / 2 \pi \mu \mathrm{~Hz}$
Figure 4: Rotational avoided crossings in the presence of rotational misalignment, computed with respect to a red giant MESA model (Model I of Ong et al., 2022). Each set of two panels shows the same set of avoided crossings, coloured variously by either m_{p} or m_{g}, for a single value of the core-envelope misalignment angle β.

Key Takeaways

- Stratified misalignment systematically reduces rotational splittings, modifies the shape of rotational avoided crossings, and may be diagnosed by per-multiplet variability of the implied inclination angle. However, inferences of the misalignment angle are geometrically degenerate without further constraints from e.g. Rossiter-McLaughlin measurements.

References

