

Structural and Evolutionary Diagnostics from

Asteroseismic Phase Functions

TASC5/KASC12

Joel Ong

July 22, 2019

Department of Astronomy, Yale University

Motivation

Frequencies of oscillation emerge as eigenvalues for solutions to a boundary-value problem:

Phase offset

homogeneous spherical well

$$\theta(\omega) = \omega T_0 - \pi \epsilon_l(\omega) = \pi \left(n + \frac{l}{2} \right)$$

$$\label{eq:nl} \begin{split} & \Downarrow \\ \nu_{nl} = \frac{1}{2T_0} \left(n + \frac{l}{2} + \frac{\epsilon_l(\nu_{nl})}{2} \right) \end{split}$$

Eigenvalue equation:
$$\theta(\omega) = \omega T - \pi \epsilon_l(\omega) = \pi \left(n + \frac{l}{2}\right)$$

Eigenvalue equation:
$$\theta(\omega) = \omega T - \pi \epsilon_l(\omega) = \pi \left(n + \frac{l}{2}\right)$$

What the observer sees

Asteroseismology in a nutshell ("data-driven" version)

• Approximate eigenvalue equation of the form

$$\nu_{nlm}\sim\Delta\nu\left(n+\frac{l}{2}+\epsilon_l\right),\;\Delta\nu\sim1/2T_0.$$

+ Scaling relations for $\Delta
u$ and $u_{
m max}$ in terms of other stellar parameters

The Story So Far

The Story So Far

 $\begin{array}{ll} \overline{\epsilon} \text{ ("intercept")} & \epsilon_a \text{ ("average")} & \epsilon_c \text{ ("central")} \\ y\text{-intercept to} & \\ \text{linear fit } (\nu \text{ vs} & \epsilon_a \sim \left\langle \frac{\nu}{\Delta \nu} - n \right\rangle & \epsilon_c \sim \frac{\nu_c}{\Delta \nu_c} - n_c \\ n) \text{ that also} \\ \text{returns } \Delta \nu \end{array}$

Functions of frequency

vs. Best-fitting Models

vs. Best-fitting Models

Evolutionary Diagnostics

Tracks

Metallicity

Metallicity

Mixing Length

Atmosphere

Conclusion

- Phase functions from stellar models sensitive to evolutionary and structural properties, and surface physics.
- + $\epsilon_c \Delta \nu$ diagrams yield isochrones where RGB position is insensitive to stellar composition and (some) modelling choices
- What happens if you use ϵ_c in a grid search?

Extra Slides

Modelling Parameters

- MESA v10398
 - Diffusion
 - Overshooting •
- GYRE v5.2

• Solar-calibrated Y_0 and $lpha_{\rm MLT}$ against Eddington-grev atmospheres and GS98 abundances (nothing special otherwise — I mostly used defaults)

Structural phase offsets

$$\epsilon - \nu_{\rm max}$$
 Diagram

Surface effects

T. Kallinger, S. Hekker, B. Mosser, J. De Ridder, T. R. Bedding, Y. P. Elsworth, M. Gruberbauer, D. B. Guenther, D. Stello, S. Basu, R. A. García, W. J. Chaplin, F. Mullally, M. Still, and S. E. Thompson. Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations. A&A, 541:A51, May 2012. doi: 10.1051/0004-6361/201218854.

- T. R. White, T. R. Bedding, M. Gruberbauer, O. Benomar, D. Stello,
 - T. Appourchaux, W. J. Chaplin, J. Christensen-Dalsgaard, Y. P. Elsworth, R. A. García, S. Hekker, D. Huber, H. Kjeldsen, B. Mosser, K. Kinemuchi, F. Mullally, and M. Still. Solving the Mode Identification Problem in Asteroseismology of F Stars Observed with Kepler. *ApJL*, 751:L36, June 2012. doi: 10.1088/2041-8205/751/2/L36.