TASC7/KASC14 | Slides at http://hyad.es/talks
Joel Ong
July 17, 2023
\(\ell = 0\) MDI Doppler velocities
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
\[\vdots\]
Telescopes can only point at one star at time…
Required photometric stability not achievable from ground  Â
:\
\[ \begin{aligned} \Delta\nu &\sim \int \left({\mathrm d r \over c_s }\right)^{-1}\sim t_\mathrm{ff}^{-1} \sim \sqrt{G \rho_\text{avg}} \\ \nu_\text{max} &\sim \omega_\text{cutoff} \sim g_\text{atm}/\sqrt{T_\text{atm}} \end{aligned} \]
\[ \begin{aligned} \Delta\nu &\sim \sqrt{M/R^3} \\ \nu_\text{max} &\sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
Hare “Zebedee”, Cunha+ (2021)
Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%; {\sigma_M \over M} \lesssim 5 \% \]
Further applications:
calibrating gyrochronology with
ensemble asteroseismology
(e.g. Hall+ 2021).
cf. Zachary Claytor’s talk tomorrow,
+ Rotation & Activity session
For slow rotation, \[\boxed{\delta\omega_{nlm} \sim m \beta_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
OLA (Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; etc.):
\[\scriptsize\begin{aligned}\sum_{i} \left(c_i \over m_i \beta_{i} \right) \delta\omega_{\mathrm{rot}, i} &\sim \int \Omega(r) \left(\sum_i c_i K_{i}(r)\right) \mathrm d r \\ & \to \boxed{\Omega(r_0)}\end{aligned}\]
Directly probing the stellar interior!
Direct probe into structure of
stellar interiors —
tests of evolutionary modelling (e.g. Bellinger+ 2019)
cf. Alexander Kosovichev, poster #22
\(\scriptsize u'(r) = P(r) R / \rho(r) M\)
Evolved stars dominate our asteroseismic sample.
(facultative with Kepler, obligate with TESS)
Pure p-modes: \[\boxed{\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)}\]
Pure g-modes: \[\boxed{{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)}\]
e.g. Mosser et al. 2012, 2015, 2017…; Gehan et al. 2018, 2021
\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 2 \nu^2}\]
Li et al. 2022:
Asymmetric splittings probe
core magnetic fields
(cf. Jérôme Ballot’s talk after this)
Population studies
of rotation vs. magnetism
(cf. Emily Hatt’s talk after this)
\[\scriptsize \delta \nu_{\text{mag}, g, \ell=1} \sim {m^2 \over \nu^3}\]
from Mosser+ (2014)
Single-star electron degeneracy sequence:
deviations → merger remnants?
(Rui+ 2021, Deheuvels+ 2021)
Hon et al. (in prep.)
(RHD simulations courtesy of Joel D. Tanner)
Pulsations emerging from
3D hydrodynamic simulations
(e.g. Zhou+ 2020, 2021)
cf. Zhou Yixiao’s talk on Thursday
Describing pulsations
in the Fokker-Planck picture
with a stochastic wave equation:
Philidet et al. 2021, 2022
\[\tiny\begin{aligned} & \mathrm{d} A_\mu = \left(\mathcal{G}_\mu - \dfrac{1}{2}\sum_{\lambda\nu} \dfrac{\partial \mathcal{D}^{1/2}_{\mu\lambda}}{\partial A_\nu} \mathcal{D}^{1/2}_{\lambda\nu} \right) ~ \mathrm{d} t + \sum_{\nu} \mathcal{D}^{1/2}_{\mu\nu} \circ \mathrm{d} W_{A\nu}~,\\ & \mathrm{d} \Phi_\mu = \left(\mathcal{H}_\mu - \dfrac{1}{2}\sum_{\lambda\nu} \dfrac{\partial \mathcal{F}^{1/2}_{\mu\lambda}}{\partial \Phi_\nu} \mathcal{F}^{1/2}_{\lambda\nu} \right) ~ \mathrm{d} t + \sum_{\nu} \mathcal{F}^{1/2}_{\mu\nu} \circ \mathrm{d} W_{\Phi\nu}~, \end{aligned}\] \[ \tiny \dfrac{\partial w}{\partial t} = -\dfrac{\partial w\mathcal{G}_\mu}{\partial A_\mu} - \dfrac{\partial w\mathcal{H}_\mu}{\partial \Phi_\mu} + \dfrac{1}{2}\dfrac{\partial^2 w\mathcal{D}_{\mu\nu}}{\partial A_\mu\partial A_\nu} + \dfrac{1}{2}\dfrac{\partial^2 w\mathcal{E}_{\mu\nu}}{\partial A_\mu\partial \Phi_\nu} + \dfrac{1}{2}\dfrac{\partial^2 w\mathcal{F}_{\mu\nu}}{\partial \Phi_\mu \partial\Phi_\nu}~. \]
An ensemble approach
to surface-term corrections (Li+ 2023)
cf. Li Yaguang’s talk on Wednesday
Novel applications of astrostatistics:
asteroseismology in the
time domain
with Gaussian Processes
e.g. Pereira+ 2019
see also Daniel Hey’s poster #35
Probing the star-planet connection with TESS
e.g. see Marc Hon’s talk Wednesday
Rotation & Planets — see Alexander Stephan’s talk Wednesday
TESS + Radial Velocities —
e.g. see Zhang Jingwen’s talk Wednesday (KPF);
Tiago Campante’s talk on Thursday (ESPRESSO)
PLATO will come (eventually)
(cf. Jeroen Audenaert’s talk on Friday)
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]