TAPIR Seminar
Joel Ong
Hubble Fellow, Univ. of Hawaiʻi at Mānoa
September 13, 2024
(RHD simulations courtesy of Joel D. Tanner)
Convection excites
pressure waves (p-modes).
\(\ell = 0\) MDI Doppler velocities
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
Evolved stars dominate our asteroseismic sample.
(e.g. only \(\sim 100\) Kepler main-sequence stars)
Pressure waves (p-modes)
propagate isotropically.
Buoyancy waves (g-modes)
propagate anisotropically.
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]
Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation
in two zones (core vs. envelope).
Cumulative sensitivity \(b(r)\)
pure g-mode pure p-mode
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_\ell}\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_\ell, N}\]
\[{\color{gray}\sin \left[\int_{r_{1, p}}^{r_{2, p}} k_+ \mathrm d r\right] = 0}\]
\[{\color{red}\cos \left[\int_{r_{1, g}}^{r_{2, g}} k_- \mathrm d r\right] = 0}\]
\[{\color{gray}\tan \left[\int_{r_{1, p}}^{r_{2, p}} k_+ \mathrm d r\right]}{\color{red}\cot \left[\int_{r_{1, g}}^{r_{2, g}} k_- \mathrm d r\right]} = {1\over 4}\exp\left[-2\int_{r_{2,p}}^{r_{1,g}} \kappa \mathrm d r\right]\]
\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]
\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]
\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]
Mixed mode
frequencies and mixing coefficients can likewise be found by solving
the
Generalised Hermitian Eigenvalue Problem: \[
\scriptsize
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\
\mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i},
\hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}}
= \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020)
(Ong & Basu 2020)
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]
\[\iff\]
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
Rotation gives a Quadratic Hermitian Eigenvalue
Problem
(Ong et al. 2022):
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
Very high \(\mathrm{A(Li)}\),
but otherwise innocuous
\[\ell = 0,2?\]
But Kepler says \(\ell =
0\) have to live here!
(and theory says so too…)
Rotational splittings from seismology:
\(\implies P_\text{rot} \sim 115\ \mathrm{d}?\)
Gaia RV scatter rules out
large RV semiamplitudes…
\(P_\text{orb} \gg 99\ \mathrm{d}\)
cannot spin star
up to 99-day rotational period…
Remaining permissible orbits are
unstable to tidal dissipation!
\(\implies\) ENGULFMENT?
\(\beta = 0\)
\(\beta = {\pi\over10}\)
\(\beta = {\pi\over2}\)
\(\beta = \pi\)
From Huber et al. 2013
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation
in two zones (core vs. envelope).
Cumulative sensitivity \(b(r)\)
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Even the most p-dominated mixed modes
are sensitive to core rotation!
Cumulative sensitivity \(b(r)\)
From Huber et al. 2013
Caveats:
Model-dependence? Short Cadence?
Amplitudes? Linewidths?
Mixed modes may be described as
“acoustic molecular orbitals”:
Ong
& Basu 2020, ApJ, 898, 127
We find rapid rotation in Zvrk with seismology
(confirmed independently with TESS, ASAS-SN, \(V\sin i\))
Chemical and dynamical constraints
strongly suggest an engulfment scenario.
Constraints on engulfment age (\(\lesssim
5\ \mathrm{Mya}\)) and mass (\(6\text{-}10\ M_J\)):
Ong
et al. 2024, ApJ, 966, 42
We extend this formalism to the tensor product
of the radial and horizontal problem.
Application to Kepler-56 suggests internal
misalignment.
Follow-up Rossiter-McLaughlin RV measurements
may further constrain geometry.
A better understanding of gravitoacoustic
mixed modes, and how they respond to
rotation,
has permitted us to diagnose signatures of
planetary engulfment and core-envelope
misalignment.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
\(\forall \ell, \exists (2\ell + 1) \times
(2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation
relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] =
-i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell,
-\ell + 1 \ldots \ell - 1, \ell).\)
\[\small\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]
For fixed \(m\) (to leading order):
\[\left(-\mathbf{\Omega}_0^2 + 2 \omega m \mathbf{R} + \omega^2 \mathbf{\Delta}\right)\mathbf{c} = 0\]
For fixed \(n\) (to leading order):
\[(-\omega_0^2 \mathbb{1}_{2\ell+1} + 2 \omega \mathbf{J}_z R_{n,n} + \omega^2 \mathbb{1}_{2\ell+1})\mathbf{y} = 0\]
\[\vec{\xi}_{n\ell m}(r, \theta, \varphi) = \vec{\xi}_{n\ell}(r) Y_\ell^m(\theta, \phi) \iff \underbrace{\tilde{R}_{n, n', m, m'} = R_{n,n'} J_{m,m'}}_{\text{this is a }\textbf{tensor product}!}\]
\[\implies \left(-\mathbf{\Omega_0}^2 \otimes \mathbb{1}_{2\ell+1} + 2 \omega \underbrace{\mathbf{R} \otimes \mathbf{J}_z}_{\tilde{\mathbf{R}}} + \omega^2 \mathbf{\Delta} \otimes \mathbb{1}_{2\ell+1}\right)\mathbf{x} = 0\]
Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i
\mathbf{e}_i\).
\[\small \begin{aligned} \mathbf{R}_{n\ell, n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]
\[ \boxed{\tilde{\mathbf{R}} = \int \mathbf{K}\otimes\left(\Omega_\text{rot}(r)\ \hat{\mathbf{n}}\cdot \vec{\mathbf{J}}\right)\ \mathrm{d}r} \]
\(\implies\) For each mode, AM
matrix is
specified by usual vector addition.
We only assume that the pure p- and g-mode
solutions
are separately amenable to separation of
variables;
the mixed-mode eigenfunctions need not be.
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\tilde{\mathbf{R}}_\pi} & 0 \\ 0 & {\color{forestgreen}\tilde{\mathbf{R}}_\gamma}\end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right)\mathbf{x} = 0. \]
Rotational signal probably got
detrended away
by systematic corrections…
Very suggestive…
but is this real?
Probably yes!
Asteroseismology:
Photometry:
Spectroscopy:
Gaia DR3: