Asteroseismic Diagnostics of
Engulfment and Misalignment

TAPIR Seminar

Joel Ong
Hubble Fellow, Univ. of Hawaiʻi at Mānoa

September 13, 2024

I.
Solar-like Oscillations

SOHO EIT Image (2016)

HMI Dopplergram (2017)

(RHD simulations courtesy of Joel D. Tanner)

Convection excites
pressure waves (p-modes).

\(\ell = 0\) MDI Doppler velocities

Power spectra of MDI dopplergrams

\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]

(roughly 5-minute oscillations)

p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)

Stochastic,
broad-band
excitation

II.
Seismology and Rotation

Evolved stars dominate our asteroseismic sample.

(e.g. only \(\sim 100\) Kepler main-sequence stars)

Kepler Sample (from Yu+ 2020)

Pressure waves (p-modes)
propagate isotropically.

Buoyancy waves (g-modes)
propagate anisotropically.

(proxy for age \(\to\))

Mixed modes exhibit avoided crossings
between underlying p- and g-modes.

Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]

Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]

\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]

Mixed modes probe radial differential rotation
in two zones (core vs. envelope).

Cumulative sensitivity \(b(r)\)

pure g-mode pure p-mode

Mode mixing yields avoided crossings
between multiplet components of identical \(m\)

(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)

III.
Isolating & Coupling
Mixed Modes

Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)

\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]

\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]

\[{\color{red} \omega_g < N, S_\ell}\]

\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)

\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum

\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]

\[{\color{gray} \omega_p > S_\ell, N}\]

\[{\color{gray}\sin \left[\int_{r_{1, p}}^{r_{2, p}} k_+ \mathrm d r\right] = 0}\]

\[{\color{red}\cos \left[\int_{r_{1, g}}^{r_{2, g}} k_- \mathrm d r\right] = 0}\]

\[{\color{gray}\tan \left[\int_{r_{1, p}}^{r_{2, p}} k_+ \mathrm d r\right]}{\color{red}\cot \left[\int_{r_{1, g}}^{r_{2, g}} k_- \mathrm d r\right]} = {1\over 4}\exp\left[-2\int_{r_{2,p}}^{r_{1,g}} \kappa \mathrm d r\right]\]

LCAOs give Molecular Orbitals

I stole this from a chemistry textbook

\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]

\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]

\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]

\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]

\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]

\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]

Energies and Mixing Coefficients
of Molecular Orbitals

\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]

Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem

\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]

\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]

\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]

\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]

\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]

\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]

\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]

\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]

Mixed Modes as
Acoustic “Molecular Orbitals”

\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]

Mixed mode frequencies and mixing coefficients can likewise be found by solving the
Generalised Hermitian Eigenvalue Problem:
\[ \scriptsize \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \] \[ \small L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, \hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle \]

(Ong & Basu 2020)

(Ong & Basu 2020)

\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]

\[\iff\]

\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]

Rotation gives a Quadratic Hermitian Eigenvalue Problem
(Ong et al. 2022):

\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]

IV.
Engulfment?

Very high \(\mathrm{A(Li)}\),
but otherwise innocuous

Mode Identification

\[\ell = 0,2?\]

But Kepler says \(\ell = 0\) have to live here!
(and theory says so too…)

Asteroseismology Happens…

Rotational splittings from seismology:

  • \(\ell = 1\): \(\delta\nu_{\text{rot},1} \sim 0.09\ \mu\mathrm{Hz}\)
  • \(\ell = 2\): \(\delta\nu_{\text{rot},2} \sim 0.10\ \mu\mathrm{Hz}\)

\(\implies P_\text{rot} \sim 115\ \mathrm{d}?\)

How did this happen??

Gaia RV scatter rules out
large RV semiamplitudes…

\(P_\text{orb} \gg 99\ \mathrm{d}\) cannot spin star
up to 99-day rotational period…

Remaining permissible orbits are
unstable to tidal dissipation!

\(\implies\) ENGULFMENT?

V.
Misalignment

Why???

e.g. Zvrk: Ong et al. (2024)
e.g. Anomalous Envelope Rotation:  Li Gang et al. (2024)
  • Stars tend to have (and interact with) companions: binaries, planetary systems, engulfments…
  • Seismic rotational measurements indicate anomalies?

Parameterising Misalignment

Euler Angles

\(\beta = 0\)

\(\beta = {\pi\over10}\)

\(\beta = {\pi\over2}\)

\(\beta = \pi\)

Kepler-56

\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]

Mixed modes probe radial differential rotation
in two zones (core vs. envelope).

Cumulative sensitivity \(b(r)\)

\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]

Even the most p-dominated mixed modes
are sensitive to core rotation!

Cumulative sensitivity \(b(r)\)

Caveats:

Model-dependence? Short Cadence?
Amplitudes? Linewidths?

VI.
Wrapping Up

Isolating and Decoupling Mixed Modes

Mixed modes may be described as
“acoustic molecular orbitals”:
Ong & Basu 2020, ApJ, 898, 127

A Rapidly-Rotating Engulfment Candidate

We find rapid rotation in Zvrk with seismology
(confirmed independently with TESS, ASAS-SN, \(V\sin i\))

Chemical and dynamical constraints
strongly suggest an engulfment scenario.

Constraints on engulfment age (\(\lesssim 5\ \mathrm{Mya}\)) and mass (\(6\text{-}10\ M_J\)):
Ong et al. 2024, ApJ, 966, 42

Core-Envelope Misalignment

We extend this formalism to the tensor product
of the radial and horizontal problem.

Application to Kepler-56 suggests internal misalignment.
Follow-up Rossiter-McLaughlin RV measurements
may further constrain geometry.

Asteroseismic Diagnostics of
Engulfment & Misalignment

A better understanding of gravitoacoustic
mixed modes, and how they respond to rotation,
has permitted us to diagnose signatures of
planetary engulfment and core-envelope misalignment.

\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]

Backup Slides

Misaligned Mixed Modes

Angular Momentum Matrices

\(\forall \ell, \exists (2\ell + 1) \times (2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] = -i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell, -\ell + 1 \ldots \ell - 1, \ell).\)

Example: \(\ell = 1\)

\[\small\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]

Rotation as an Eigenvalue Problem

For fixed \(m\) (to leading order):

\[\left(-\mathbf{\Omega}_0^2 + 2 \omega m \mathbf{R} + \omega^2 \mathbf{\Delta}\right)\mathbf{c} = 0\]

For fixed \(n\) (to leading order):

\[(-\omega_0^2 \mathbb{1}_{2\ell+1} + 2 \omega \mathbf{J}_z R_{n,n} + \omega^2 \mathbb{1}_{2\ell+1})\mathbf{y} = 0\]

Combined Angular Momentum Operator
(Aligned Case)

\[\vec{\xi}_{n\ell m}(r, \theta, \varphi) = \vec{\xi}_{n\ell}(r) Y_\ell^m(\theta, \phi) \iff \underbrace{\tilde{R}_{n, n', m, m'} = R_{n,n'} J_{m,m'}}_{\text{this is a }\textbf{tensor product}!}\]

\[\implies \left(-\mathbf{\Omega_0}^2 \otimes \mathbb{1}_{2\ell+1} + 2 \omega \underbrace{\mathbf{R} \otimes \mathbf{J}_z}_{\tilde{\mathbf{R}}} + \omega^2 \mathbf{\Delta} \otimes \mathbb{1}_{2\ell+1}\right)\mathbf{x} = 0\]

The Misaligned Angular Momentum Operator

Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i \mathbf{e}_i\).

\[\small \begin{aligned} \mathbf{R}_{n\ell, n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]

\[ \boxed{\tilde{\mathbf{R}} = \int \mathbf{K}\otimes\left(\Omega_\text{rot}(r)\ \hat{\mathbf{n}}\cdot \vec{\mathbf{J}}\right)\ \mathrm{d}r} \]

\(\implies\) For each mode, AM matrix is
specified by usual vector addition.

Mixed Modes

We only assume that the pure p- and g-mode solutions
are separately amenable to separation of variables;
the mixed-mode eigenfunctions need not be.

\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\tilde{\mathbf{R}}_\pi} & 0 \\ 0 & {\color{forestgreen}\tilde{\mathbf{R}}_\gamma}\end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right)\mathbf{x} = 0. \]

More about Zvrk

Rotational signal probably got
detrended away
by systematic corrections…

TESS w/ Pixel-Level Decorrelation + Stitching

Very suggestive…
but is this real?

Probably yes!

Observational Overview

Asteroseismology:

  • \(M \sim 1.14 \pm 0.04\ M_\odot\)
  • \(R \sim 23.5 \pm 0.03\ R_\odot\)
  • \(\boxed{P_\text{rot,bulk} \sim 115 \pm 10\ \text{d}}\)
  • (Maybe rotational shear?)

Photometry:

  • \(\boxed{P_\text{rot,surf} \sim 99 \pm 3\ \text{d}}\)

Spectroscopy:

  • \(\boxed{V\text{sin } i \implies P_\text{rot} \sim 110 \pm 8\ \text{d}}\)
  • \(\mathrm{A(Li)} = 3.16 \pm 0.08\ \mathrm{dex}\)
  • \(^{14}\mathrm{N}\)-deficient relative to APOGEE sample

Gaia DR3:

  • RUWE of 1.06
  • \(\sigma_V = 0.16\ \mathrm{km/s}\)
    over 2.2 years

What does Misalignment Mean???

  • Only three known misaligned multiplanet systems (HD 3167 and K2-290A)
    • Implications for orbital architectures?
  • What about other notionally envelope-counterrotating stars?
  • Constraints on realignment \(\mathcal{Q}\) and/or torque mechanisms?

Hjorth et al. 2021: Extreme misalignment angles are possible even in a coplanar configuration