Seminar @ MSSL | Slides at http://hyad.es/talks
Joel Ong
August 29, 2023
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
\(\implies\) equipartition
between different \(m\)
For slow rotation, \[\boxed{\delta\omega_{nlm} \sim m b_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
Variations in \(\delta\omega_\text{rot}\) are
radial differential rotation.
e.g. Rotational Inversions
\[\scriptsize\begin{aligned} \int \Omega(r) {\color[RGB]{0,100,255}\left(\sum_i c_i K_{i}(r)\right)} \mathrm d r &\sim \sum_{i} \left(c_i \over m_i b_{i} \right) \delta\omega_{\mathrm{rot}, i} \\ & \to \boxed{\Omega({\color[RGB]{0,100,255}r_0})}\end{aligned}\]
OLA
(Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; etc.)
Hare “Zebedee”, Cunha+ (incl. Ong, 2021)
Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%; {\sigma_M \over M} \lesssim 5 \% \]
Very high \(\mathrm{A(Li)}\),
but otherwise innocuous
\[\ell = 0,2?\]
But Kepler says \(\ell =
0\) have to live here!
(and theory says so too…)
Rotational splittings from seismology:
\(\implies P_\text{rot} \sim 115\ \mathrm{d}?\)
Rotational signal probably got
detrended away
by systematic corrections…
Very suggestive…
but is this real?
Probably yes!
Gaia RV scatter rules out
large RV semiamplitudes…
\(P_\text{orb} \gg 99\ \mathrm{d}\)
cannot spin star
up to 99-day rotational period…
Remaining permissible orbits are
unstable to tidal dissipation!
\(\implies\) ENGULFMENT?
Albrecht+ 2021:
A Preponderance of Perpendicular Planets
From De+ 2023
Saunders+ (in
prep.)
\(\forall \ell, \exists (2\ell + 1) \times
(2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation
relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] =
-i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell,
-\ell + 1 \ldots \ell - 1, \ell).\)
\[\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]
Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i
\mathbf{e}_i\).
\[ \begin{aligned} \mathbf{R}_{n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]
For each mode, AM matrix is specified by usual vector addition.
Let’s say \[\mathbf{\Omega}(r) = \Omega_0 \times \left\{\begin{matrix}\mathbf{e}_z, & r < r_0 \\ \hat{\mathbf{n}}, & r > r_0\end{matrix}\right.,\] s.t. \(\cos \beta = \mathbf{e}_z \cdot \hat{\mathbf{n}}\).
\[\text{Define}\ \alpha = \int_{r_0}^R
K(r)\ \mathrm d r\] (i.e. \(\alpha\) varies
from multiplet to multiplet).
Misalignment \(\implies\) Different apparent \(i\) per multiplet.
Geometrical degeneracy owing to
unconstrained orientation angle \(\gamma\).
Kepler-56: Red giant
with multiple planets,
misaligned axis, and
outer companion.
(TTV and RV measurements: Huber+ 2013)
\(\star\)
Linear approximation:
\[\huge\delta\omega_\text{rot} \sim \zeta \cdot {1\over2}\left<\Omega_\text{core}\right> + \underbrace{(1-\zeta) \left<\Omega_\text{env}\right>}_{\scriptsize\mathrm{usually~ignored}}\]
\[\Large\implies \alpha = {\zeta \over 2 - \zeta}\]
adapted from Huber+ 2013
\(\delta\nu_\text{rot}/\mu\mathrm{Hz}\)
\(i/^\circ\)
adapted from Huber+ 2013
\[i_g = 43 \pm 4 \ ^\circ\]
\[i_p = 51 \pm 4 \ ^\circ\]
Potential misalignment?
R-M measurements might break geometrical degeneracy.
If for pure p-modes \(\delta \omega_p \sim
m b_p \Omega_\mathrm{env}\)
and for pure g-modes \(\delta \omega_g \sim m
b_g \Omega_\mathrm{core}\),
then surely for mixed modes,
\(\delta \omega_\mathrm{mixed} \sim m
\left(\zeta b_g \Omega_\mathrm{core} + (1 - \zeta) b_p
\Omega_\mathrm{env}\right)\)?
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
How to incorporate misalignment into nonlinear treatment of mode coupling?
\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[ {\color{gray}\tan \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right]} {\color{red}\cot \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right]} = {1 \over 4} \exp \left[-2 \int_{r_{2,g}}^{r_{1,p}} |k_r| \mathrm d r\right]\]
Asymptotic analysis performed after separation of variables. (i.e. a priori alignment throughout star)
\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]
\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]
\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]
Mixed mode
frequencies and mixing coefficients can likewise be found by solving
the
Generalised Hermitian Eigenvalue Problem: \[
\scriptsize
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\
\mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i},
\hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}}
= \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020)
(Ong & Basu 2020)
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]
\[\iff\]
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey}
\sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j}
\vec{\xi}_{\gamma,j}}\]
Rotation gives a Quadratic Hermitian Eigenvalue
Problem
(Ong et al. 2022):
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
With the core aligned along \(\mathbf{e}_z\),
and the envelope misaligned along \(\hat{\mathbf{n}}\)
under a rotation described by \(\mathbf{d}^\ell(\beta)\),
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
\[ \scriptsize \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\mathbf{R}_\pi} \otimes \mathbf{J}_z & 0 \\ 0 & {\color{forestgreen}\mathbf{R}_\gamma} \otimes \mathbf{J}_z \end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
\[ \scriptsize \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\mathbf{R}_\pi} \otimes {\mathbf{d}^\ell}^\dagger\mathbf{J}_z\mathbf{d}^\ell & 0 \\ 0 & {\color{forestgreen}\mathbf{R}_\gamma} \otimes \mathbf{J}_z \end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
\(\beta = 0\)
\(\beta = {\pi\over10}\)
\(\beta = {\pi\over2}\)
\(\beta = \pi\)
TESS finds a lithium-rich, rapidly rotating,
and likely standalone red giant, with rotation
confirmed independently using ASAS-SN, seismology,
\(V \sin i\).
Other constraints from spectroscopy and Gaia
strongly suggest an engulfment scenario.
If engulfment, \(< 5\ \mathrm{Mya}\), with mass about \(6\)-\(10\ M_J\).
(Ong et al., submitted to ApJ)
Stratified misalignment systematically reduces rotational splittings, modifies the shape of rotational avoided crossings, and may be diagnosed by per-multiplet variability of apparent \(i_\star\).
Inferences of \(\beta\) are geometrically degenerate without further constraints from e.g. Rossiter-McLaughlin measurements.
(Ong et al., in prep.)
We have found a red giant engulfment candidate in the TESS field, whose former companion may have been eccentric, and therefore inclined relative to the stellar rotational axis.
Engulfment of an inclined companion would lead to
internal rotational misalignment,
whose seismic signatures we examine in detail.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
V501 Aur: a red giant accidentally misclassified as
a WTT!
(Vaňko et al. 2017: spectroscopic binary with \(K = 27\ \mathrm{km/s}, P \sim 69\
\mathrm{d}\))
Asteroseismology:
Photometry:
Spectroscopy:
Gaia DR3:
\(\forall \ell, \exists (2\ell + 1) \times
(2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation
relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] =
-i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell,
-\ell + 1 \ldots \ell - 1, \ell).\)
\[\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]
\(\forall\) coordinate rotations by
angle \(\beta\) sending \(\mathbf{e}_z\) to \(\hat{\mathbf{n}}\),
\(\exists\) unitary \(\mathbf{d}^\ell\) of rank \(2\ell + 1\) such that \[Y^\ell_{m}(\theta_{\mathbf{e}_z},
\varphi_{\mathbf{e}_z}) = \sum_{m'} d^\ell_{m', m}(\beta)
Y^\ell_{m'}(\theta_\hat{\mathbf{n}},
\varphi_\hat{\mathbf{n}}).\]
Under this change of basis, \(\mathbf{A} \mapsto {\mathbf{d}^\ell}^\dagger \mathbf{A} {\mathbf{d}^\ell}\).
e.g. rotations around \(\mathbf{e}_y\) generate
\(\mathbf{d}^\ell(\beta) = \exp\left[ i \beta
\mathbf{J}_y \right]\). In this case
\(\mathbf{e}_z \mapsto \mathbf{e}_z \cos \beta
- \mathbf{e}_x \sin \beta\).
Under the change of basis generated by \(\mathbf{d}^\ell\),
\({\mathbf{d}^\ell}^\dagger \mathbf{J}_z
{\mathbf{d}^\ell} = \mathbf{J}_z \cos \beta - \mathbf{J}_x \sin \beta
\equiv \boxed{\hat{\mathbf{n}}(\beta) \cdot
\vec{\mathbf{J}}}\).
\(\mathbf{d}^\ell\) is unitary \(\implies \hat{\mathbf{n}} \cdot
\vec{\mathbf{J}}\) has
same eigenvalues as \(\mathbf{J}_z\),
with basis functions aligned wrt \(\hat{\mathbf{n}}\).