Asteroseismic Signatures of
Engulfment and Misalignment

Seminar @ MSSL | Slides at http://hyad.es/talks

Joel Ong

August 29, 2023

I.
Solar-like Oscillations

Power spectra of MDI dopplergrams

\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]

(roughly 5-minute oscillations)

p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)

Stochastic,
broad-band
excitation

\(\implies\) equipartition
between different \(m\)

For slow rotation, \[\boxed{\delta\omega_{nlm} \sim m b_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]

Variations in \(\delta\omega_\text{rot}\) are

  • assumed to imply, and
  • used to study,

radial differential rotation.

e.g. Rotational Inversions

\[\scriptsize\begin{aligned} \int \Omega(r) {\color[RGB]{0,100,255}\left(\sum_i c_i K_{i}(r)\right)} \mathrm d r &\sim \sum_{i} \left(c_i \over m_i b_{i} \right) \delta\omega_{\mathrm{rot}, i} \\ & \to \boxed{\Omega({\color[RGB]{0,100,255}r_0})}\end{aligned}\]

OLA (Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; etc.)

Key Application: Global Parameter Estimation

Hare “Zebedee”, Cunha+ (incl. Ong, 2021)

Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%; {\sigma_M \over M} \lesssim 5 \% \]

II.
A Rapidly Rotating Red Giant

Very high \(\mathrm{A(Li)}\),
but otherwise innocuous

Mode Identification

\[\ell = 0,2?\]

But Kepler says \(\ell = 0\) have to live here!
(and theory says so too…)

Asteroseismology Happens…

Rotational splittings from seismology:

  • \(\ell = 1\): \(\delta\nu_{\text{rot},1} \sim 0.09\ \mu\mathrm{Hz}\)
  • \(\ell = 2\): \(\delta\nu_{\text{rot},2} \sim 0.10\ \mu\mathrm{Hz}\)

\(\implies P_\text{rot} \sim 115\ \mathrm{d}?\)

Rotational signal probably got
detrended away
by systematic corrections…

TESS w/ Pixel-Level Decorrelation + Stitching

Very suggestive…
but is this real?

Probably yes!

How did this happen??

Gaia RV scatter rules out
large RV semiamplitudes…

\(P_\text{orb} \gg 99\ \mathrm{d}\) cannot spin star
up to 99-day rotational period…

Remaining permissible orbits are
unstable to tidal dissipation!

\(\implies\) ENGULFMENT?

III.
Rotational Misalignment

from Albrecht+ (2021)

Albrecht+ 2021:
A Preponderance of Perpendicular Planets

From De+ 2023

Saunders+ (in prep.)

Parameterising Misalignment

Euler Angles

Angular Momentum Matrices

\(\forall \ell, \exists (2\ell + 1) \times (2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] = -i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell, -\ell + 1 \ldots \ell - 1, \ell).\)

Example: \(\ell = 1\)

\[\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]

The Oblique Angular Momentum Operator

Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i \mathbf{e}_i\).

\[ \begin{aligned} \mathbf{R}_{n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]

For each mode, AM matrix is specified by usual vector addition.

A Toy Two-Zone Model

Two Misaligned Zones

Let’s say \[\mathbf{\Omega}(r) = \Omega_0 \times \left\{\begin{matrix}\mathbf{e}_z, & r < r_0 \\ \hat{\mathbf{n}}, & r > r_0\end{matrix}\right.,\] s.t. \(\cos \beta = \mathbf{e}_z \cdot \hat{\mathbf{n}}\).

\[\text{Define}\ \alpha = \int_{r_0}^R K(r)\ \mathrm d r\] (i.e. \(\alpha\) varies
from multiplet to multiplet).

Misalignment \(\implies\) Different apparent \(i\) per multiplet.

Geometrical degeneracy owing to
unconstrained orientation angle \(\gamma\).

Case Study: Kepler-56

Kepler-56: Red giant
with multiple planets,
misaligned axis, and
outer companion.

(TTV and RV measurements: Huber+ 2013)

Kepler Sample (from Yu+ 2020)
Kepler-56 orbital configuration

\(\star\)

Linear approximation:

\[\huge\delta\omega_\text{rot} \sim \zeta \cdot {1\over2}\left<\Omega_\text{core}\right> + \underbrace{(1-\zeta) \left<\Omega_\text{env}\right>}_{\scriptsize\mathrm{usually~ignored}}\]

\[\Large\implies \alpha = {\zeta \over 2 - \zeta}\]

Kepler-56: Rotational Splittings

adapted from Huber+ 2013

\(\delta\nu_\text{rot}/\mu\mathrm{Hz}\)

\(i/^\circ\)

adapted from Huber+ 2013

\[i_g = 43 \pm 4 \ ^\circ\]

\[i_p = 51 \pm 4 \ ^\circ\]

Potential misalignment?

R-M measurements might break geometrical degeneracy.

IV.
Near-Degeneracy Effects

If for pure p-modes \(\delta \omega_p \sim m b_p \Omega_\mathrm{env}\)
and for pure g-modes \(\delta \omega_g \sim m b_g \Omega_\mathrm{core}\),
then surely for mixed modes,
\(\delta \omega_\mathrm{mixed} \sim m \left(\zeta b_g \Omega_\mathrm{core} + (1 - \zeta) b_p \Omega_\mathrm{env}\right)\)?

Mode mixing yields avoided crossings
between multiplet components of identical \(m\)

(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)

How to incorporate misalignment into nonlinear treatment of mode coupling?

JWKB Analysis?

\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]

\[ {\color{gray}\tan \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right]} {\color{red}\cot \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right]} = {1 \over 4} \exp \left[-2 \int_{r_{2,g}}^{r_{1,p}} |k_r| \mathrm d r\right]\]

Asymptotic analysis performed after separation of variables. (i.e. a priori alignment throughout star)

Intermission

LCAOs give Molecular Orbitals

I stole this from a chemistry textbook

\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]

\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]

\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]

\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]

\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]

\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]

Energies and Mixing Coefficients
of Molecular Orbitals

\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]

Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem

\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]

\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]

\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]

\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]

\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]

\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]

\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]

\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]

Mixed Modes as
Acoustic “Molecular Orbitals”

\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]

Mixed mode frequencies and mixing coefficients can likewise be found by solving the
Generalised Hermitian Eigenvalue Problem:
\[ \scriptsize \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \] \[ \small L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, \hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle \]

(Ong & Basu 2020)

(Ong & Basu 2020)

\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]

\[\iff\]

\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]

Rotation gives a Quadratic Hermitian Eigenvalue Problem
(Ong et al. 2022):

\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]

Oblique Eigenvalue Problem

With the core aligned along \(\mathbf{e}_z\),
and the envelope misaligned along \(\hat{\mathbf{n}}\)
under a rotation described by \(\mathbf{d}^\ell(\beta)\),

\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]

\[ \scriptsize \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\mathbf{R}_\pi} \otimes \mathbf{J}_z & 0 \\ 0 & {\color{forestgreen}\mathbf{R}_\gamma} \otimes \mathbf{J}_z \end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]

\[ \scriptsize \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\mathbf{R}_\pi} \otimes {\mathbf{d}^\ell}^\dagger\mathbf{J}_z\mathbf{d}^\ell & 0 \\ 0 & {\color{forestgreen}\mathbf{R}_\gamma} \otimes \mathbf{J}_z \end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]

\(\beta = 0\)

\(\beta = {\pi\over10}\)

\(\beta = {\pi\over2}\)

\(\beta = \pi\)

Conclusion

A Rapidly-Rotating Red Giant

TESS finds a lithium-rich, rapidly rotating,
and likely standalone red giant, with rotation
confirmed independently using ASAS-SN, seismology, \(V \sin i\).

Other constraints from spectroscopy and Gaia
strongly suggest an engulfment scenario.

If engulfment, \(< 5\ \mathrm{Mya}\), with mass about \(6\)-\(10\ M_J\).

(Ong et al., submitted to ApJ)

Core-Envelope Misalignment

Stratified misalignment systematically reduces rotational splittings, modifies the shape of rotational avoided crossings, and may be diagnosed by per-multiplet variability of apparent \(i_\star\).

Inferences of \(\beta\) are geometrically degenerate without further constraints from e.g. Rossiter-McLaughlin measurements.

(Ong et al., in prep.)

Summary

We have found a red giant engulfment candidate in the TESS field, whose former companion may have been eccentric, and therefore inclined relative to the stellar rotational axis.

Engulfment of an inclined companion would lead to
internal rotational misalignment,
whose seismic signatures we examine in detail.

\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]

Extras

Magnetorotational Braking

Could it be a T Tauri Star?

V501 Aur: a red giant accidentally misclassified as a WTT!
(Vaňko et al. 2017: spectroscopic binary with \(K = 27\ \mathrm{km/s}, P \sim 69\ \mathrm{d}\))

Consolidated Constraints

Observational Overview

Asteroseismology:

  • \(M \sim 1.14 \pm 0.04\ M_\odot\)
  • \(R \sim 23.5 \pm 0.03\ R_\odot\)
  • \(P_\text{rot,bulk} \sim 115 \pm 10\ \mathrm{d}\)
  • (Weak evidence for rotational shear)

Photometry:

  • \(P_\text{rot,surf} \sim 99 \pm 3\ \mathrm{d}\)

Spectroscopy:

  • \(V\sin i \implies \sim 110 \pm 8\ \mathrm{d}\)
  • \(\mathrm{A(Li)} = 3.16 \pm 0.08\ \mathrm{dex}\)
  • \(^{14}\mathrm{N}\)-deficient relative to APOGEE sample

Gaia DR3:

  • RUWE of 1.06
  • \(\sigma_V = 0.16\ \mathrm{km/s}\)
    over 2.2 years

Orbits of Engulfed Companions

Angular Momentum Matrices

Angular Momentum Matrices

\(\forall \ell, \exists (2\ell + 1) \times (2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] = -i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell, -\ell + 1 \ldots \ell - 1, \ell).\)

Example: \(\ell = 1\)

\[\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]

Rotation of the Angular Momentum Operator

\(\forall\) coordinate rotations by angle \(\beta\) sending \(\mathbf{e}_z\) to \(\hat{\mathbf{n}}\),
\(\exists\) unitary \(\mathbf{d}^\ell\) of rank \(2\ell + 1\) such that \[Y^\ell_{m}(\theta_{\mathbf{e}_z}, \varphi_{\mathbf{e}_z}) = \sum_{m'} d^\ell_{m', m}(\beta) Y^\ell_{m'}(\theta_\hat{\mathbf{n}}, \varphi_\hat{\mathbf{n}}).\]

Under this change of basis, \(\mathbf{A} \mapsto {\mathbf{d}^\ell}^\dagger \mathbf{A} {\mathbf{d}^\ell}\).

Representation Theory of SO(3)

e.g. rotations around \(\mathbf{e}_y\) generate
\(\mathbf{d}^\ell(\beta) = \exp\left[ i \beta \mathbf{J}_y \right]\). In this case
\(\mathbf{e}_z \mapsto \mathbf{e}_z \cos \beta - \mathbf{e}_x \sin \beta\).

Under the change of basis generated by \(\mathbf{d}^\ell\),
\({\mathbf{d}^\ell}^\dagger \mathbf{J}_z {\mathbf{d}^\ell} = \mathbf{J}_z \cos \beta - \mathbf{J}_x \sin \beta \equiv \boxed{\hat{\mathbf{n}}(\beta) \cdot \vec{\mathbf{J}}}\).

\(\mathbf{d}^\ell\) is unitary \(\implies \hat{\mathbf{n}} \cdot \vec{\mathbf{J}}\) has
same eigenvalues as \(\mathbf{J}_z\),
with basis functions aligned wrt \(\hat{\mathbf{n}}\).