Mixed Modes and the Asteroseismic Surface Term
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Introduction Perturbation Analysis for Mixed Modes Population-level systematic biases
» Normal modes of stellar oscillations computed from stellar models exhibit systematic » In general, the perturbed eigenvalues can be written in powers of A as » We derived estimates of global properties (e.g. masses, radii, ages, Yy) with respect to
deviations compared to those obtained observationally (fig. 1). These deviations must surf model () 5 () 3 (3) different treatments of the surface term, for a sample of subgiants observed with
Whim = Whim AW + A w + Nw o+ (2) Kepler, k2, and TESS.

be corrected when mode frequencies are used in stellar modelling.
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standard solar model with matching interior structure. o S
» Traditional treatments of mode coupling in the surface term also apply two

Figure 6: Comparison of inferred values using different approaches to mode coupling, under two different
prescriptions for surface-term correction
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> Evolved stars exhibit mode mixing between the solar-like p-modes and an interior » We show that these operations approximately commute only to leading order in A = 7 # 3 0 Bl A
_ . . . . . . i . . . = Il =2 o 0.28 1 i S
surface-term corrections proposed in the literature, and has not hitherto been expansion in powers of A converges. In Ong et al. (2021), we derive criteria under which DR s - Poia=ll
investigated analytically in this context. power series of the form of eq. (2) may converge (fig. 4). ol .
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Figure 4: Local g-mode spacing (dot-dashed lines) and coupling strengths (solid lines with filled points) near o fge/gyi (Firsiorder)g v " R (Fifs'iirder) o "
Umax TOr @ sequence of solar-composition MESA evolutionary tracks at various stellar masses. Traditional
. . . approximations may only be applied when the surface term is much smaller than both of these quantities. » We find that using traditional first-order techniques yields signficant systematic biases
Coupling Matrices for Mixed Modes 10°; e 77 10° ; e 16 in the inferred properties at the 3¢ level when considering the sample as a whole.
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» Ong & Basu (2020) propose a decomposition of mixed modes into pure p-like 7 modes, ) — i ot ] L5 Single-Target Systematics
and pure g-like yv-modes (fig. 2), with associated coupling matrices. 3 :
- . Schemat cation of a mixed mod function (black) i beiant MESA model = 107" 5 14 » We also consider in detail the interaction between the surface term and mode coupling
1sure & >ehematic representation or 4 mixead mode wavetunction 1blaciin a subgian Moaes as @ S 1072 5 — (fig. 7) for the most extreme outlier in our sample (TOI 197; Huber et al., 2019)
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10t - < § Figure 7: Joint posterior distributions in various inferred quantities for TOI-197, for different combinations of
. g -y 10-3 r 1.2 surface-term prescriptions and spectroscopic constraints.
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» We also derive generalised surface term corrections for mixed modes (e.g. fig. 5). . =
A 1 First order
Figure 5: Generalised ¢-matching algorithm, based on the prescription of Roxburgh (2016), applied to an £ \5, Full Mode Coupling
10~1 +—— : — : . \-*u —— artificial surface term perturbing mixed modes in a subgiant model. From Ong et al. (2021). E: W W EllntotilmLmthL
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» Under the act|o.n of a perturbapon to the.s‘tellar structure, the perturbed mixed-mode 0.055 /H// e | ’ = —_— - .
frequencies satisfy the Generalised Hermitian Eigenvalue Problem (Ong et al., 2021): . | | | | ¢ M/Mo B/Ro Age/Gyr %
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—Qﬂ R?W g 1 D?W 53 0.06 1 b e » Inappropriate treatment of mode coupling when correcting for the surface term
RT (02 + AV f = —Ww DT 1 fa (1) P potentially yields significant single-target measurement error in the global properties
™y Y T 0.04 - A Inferred from asteroseismology.
where X\ € [0,1] Is a small parameter describing the strength of the perturbation. /)r bo1=0 Rof
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» If the perturbation is localised to the surface, as is the case with the surface term, then 0.02 /P/ + I=1 _
: ) — 1=2
Vvanishes on the y-mode subspace. Huber, D, Chaplin, W. ], Chontos, A, et al. 2019, AJ, 157, 245
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