(for fun and for profit)
Joel Ong
Hubble Fellow,
Univ. of Hawaiʻi at Mānoa
November 7, 2024
physics of stellar interiors
quantitative
astronomy & astrophysics
(RHD simulations courtesy of Joel D. Tanner)
Convection excites
pressure waves (p-modes).
\(\ell = 0\) MDI Doppler velocities
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
Telescopes can only point at one star at time…
Required photometric stability not achievable from ground
\[ \begin{aligned} {\Delta\nu} & \sim 1/t_\text{cross} \sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim{g/c_s} \sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]
\[V_\text{osc} \sim L / M\]
\[ \begin{aligned} {\Delta\nu} &\sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
Probes of the internal states of stars … now return constraints on stellar structure previously only theorized. —Astro 2020
Decadal Survey
(e.g. Bellinger+ 2017, 2019; Pedersen+ 2018;
Vanlaer+ 2023; Buchele+ 2024)
Bellinger+ 2019
Relative difference in isothermal sound speed
Evolved stars dominate our asteroseismic sample.
(e.g. only \(\sim 100\) Kepler main-sequence stars)
Pressure waves (p-modes)
propagate isotropically.
Buoyancy waves (g-modes)
propagate anisotropically.
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]
Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]
\[\huge {\partial^2 \over \partial t^2}f(t, \mathbf{x}) = c_s^2 \nabla^2 f(t, \mathbf{x})\]
\[\huge -\omega^2 \hat{f}(\omega, \mathbf{x}) = c_s^2 \nabla^2 \hat{f}(\omega, \mathbf{x})\]
\[\huge -\omega^2 \hat{f}(\omega, \mathbf{k}) = -c_s^2 |\mathbf{k}|^2 \hat{f}(\omega, \mathbf{k})\]
Dispersion relation: \[\boxed{\huge \omega^2 = c_s^2 |\mathbf{k}|^2}\]
\[\huge {\partial^2 \over \partial t^2}f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\huge -\omega^2 f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\large \nabla^2 f = -\left({\omega^2 - \omega_\text{ac}^2\over c_s^2}\right) f \equiv -k^2 f\]
Wave propagates where \(k^2(r,
\omega) > 0\),
and decays where \(k^2(r, \omega)
< 0\).
Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_\ell}\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_\ell, N}\]
\[\Large \hat H \left|n\right> = \left(\hat T + \hat V\right)\left|n\right> = E_n \left|n\right>\]
\[\large {\color{blue}{\hat H_1}} \left|n\right> = \left(\hat T + \hat V_1\right)\left|n\right> = {\color{blue}E_n \left|n\right>}\]
\[\large {\color{orange}{\hat H_2}} \left|n\right> = \left(\hat T + \hat V_2\right)\left|n\right> = {\color{orange}E_n \left|n\right>}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\left|\psi_\text{mol}\right> = {\color{blue}\sum_i c_{1,i}\left|\psi_{1,i}\right>} + {\color{orange}\sum_j c_{2,j}\left|\psi_{2,j}\right>}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]
Mixed mode
frequencies and mixing coefficients can likewise be found by solving
the
Generalised Hermitian Eigenvalue Problem: \[
\scriptsize
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\
\mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i},
\hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}}
= \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020)
e.g. Mosser+ 2012; Gehan+ 2018; Ong & Gehan 2023
\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 4\pi \nu^2}\]
(\(\leftarrow\) proxy for age)
Li et al. Nat. 2022:
Asymmetric splittings probe
core magnetic fields
(Li+ 2023, Deheuvels+ 2023;
Rui, Ong, Mathis, 2024)
Population studies
of rotation vs. magnetism
(Hatt, Ong et al., 2024)
\[\scriptsize \delta \nu_{\text{mag}, g, \ell=1} \sim {m^2 \over \nu^3}\]
Integral estimator from asymptotic analysis
(Tassoul 1990, Roxburgh & Vorontsov 1994):
\[\delta\nu_{02} \sim \Delta\nu \cdot {2 \ell + 3 \over \pi^2 \nu}\left(\int_0^R{1\over r}{\mathrm d c_s \over \mathrm d r}\ \mathrm d r - {c_s(R) \over R}\right)\]
\[r_{02} \sim {2 \ell + 3 \over \pi^2 \nu}\left(\int_0^R{1\over r}{\mathrm d c_s \over \mathrm d r}\ \mathrm d r - {c_s(R) \over R}\right)\]
Traditional interpretation:
direct probe of internal structure
from White+ (2011)
Dashed lines = isochrones,
spaced by 1 Gyr
(n.b. typical Kepler uncertainty of \(<1\ \mu\)Hz)
from White+ (2011)
Main-sequence ages (\(\Delta\nu \gtrsim 50\
\mu\)Hz)
can be read off JCD or \(r_{02}\)
diagrams directly.
(\(r_{02} =
\delta\nu_{02}/\Delta\nu_1\))
What’s going on here??
(Ong & Basu 2020)
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
\[\iff\]
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{darkorange}\sum_j c_{2,j} \psi_{2,j}}\]
Fast numerical calculations of pure quadrupole p-modes,
and therefore \(\delta\nu_{02}\) or
\(r_{02}\), are now possible
in sub- and red giants.
\[\left<\delta\nu_{02}\right> = \left<\nu_{n, \ell = 0} - \nu_{n-1, \ell = 2}\right>\]
\[\delta\nu_{02,\text{Tassoul}} \sim \int {1 \over r}{\mathrm d c_s\over \mathrm d r} \mathrm d r\]
?????
Catastrophe!
Fractional acoustic radial coordinate: \(t(r) = \int_0^r \mathrm d r/ c_s\)
\(\psi = \xi_r \sqrt{r^2 \rho c_s} \sim \sin \left[\omega t + \delta_\ell\right]\)
\[\huge r_{02}(\omega) \sim {1 \over \pi} \left(\delta_2(\omega) - \delta_0(\omega)\right)\]
In deriving the classical estimator, one assumes \[ \begin{aligned} \delta_\ell(\omega,t) \sim \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right) &\sim \Theta; \\ \implies \exists t_0 \in (0, T), \text{ s.t. } \Theta(t_0) &\ll 1. \end{aligned} \] How valid is this assumption?
\[\Theta(\omega ,t) = {1 \over \omega}\left(A_0(t) + \ell(\ell + 1) A_\ell(t)\right)\]
\[\Theta(\omega ,t) = {1 \over \omega}\left(A_0(t) + \ell(\ell + 1) A_\ell(t)\right)\]
Assumption holds for MS stars,
but breaks for SGs and RGs.
The small-angle approximation assumes \[ \begin{aligned} \delta_\ell + {\pi \over 2} &= \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right) \\ &= \arctan\left[\Theta - {\ell (\ell + 1) \over 2 \omega t}\right] + \arctan\left[{\ell (\ell + 1) \over 2 \omega t}\right] &\sim \Theta. \end{aligned} \] If this approximation is not made, then one obtains that
\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3)\over \pi} {\partial \delta_\ell \over \partial [\ell(\ell+1)]} \]
\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3) \over \pi}\left[{a_\ell(T)/\omega\over 1 + \left[A_0(T) + \ell(\ell+1)a_\ell(T)\right]^2/\omega^2} + {1 \over 2 \omega T}\right]. \]
\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3) \over \pi}\left[{a_\ell(T)/\omega\over 1 + \left[A_0(T) + \ell(\ell+1)a_\ell(T)\right]^2/\omega^2} + {1 \over 2 \omega T}\right]. \]
as \(A_0, a_\ell \to 0, r_{02} \to {2\ell +
3\over\omega}(a_\ell + 1/T)\) —
this is the expression of Tassoul (1990).
as \(A_0 \to \infty, r_{02} \to {2\ell +
3\over\pi \omega T}\) —
this means \(r_{02} \sim \Delta\nu /
\nu_\text{max}\), or equivalently \(\delta\nu_{02} \sim \Delta\nu^2 /
\nu_\text{max}\),
with no dependence on internal structure??
This feature is not reproduced by asymptotic
analysis.
Observationally interesting?
The “knee” in the JCD diagram occurs
when the convective envelope’s boundary
passes a specific distance from the centre of the star:
about 1/3 of a wavelength at \(\nu_\text{max}\).
Knee feature is
bourne out observationally by \(\delta\nu_{02}\) measurements of the open
cluster M67.
(Reyes, Stello, Ong et al., Nature, in review)
(RHD simulations courtesy of Joel D. Tanner)
Mixed modes may be described as
“acoustic molecular orbitals”:
Ong
& Basu 2020, ApJ, 898, 127
We attribute singular behaviour in an integral
estimator
for the small separation \(\delta\nu_{02}\) to
a broken small-angle approximation.
(Ong et al., submitted to ApJ)
We apply this to interpret a
recently discovered observational feature
in asteroseismic isochrones, which is sensitive to
convective boundary mixing.
(Reyes et al., submitted to
Nature)
Access to g-modes has usually been the main
focus
when studying gravitoacoustic mixed modes.
A better understanding of their coupling,
isolating their p-mode components,
allows us to observationally constrain
convective boundary mixing.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
\[\scriptsize{1 \over r^2}{\mathrm d \over \mathrm d r}\left(r^2 {\color{red}\xi^r}\right) - {g \over c_s^2} {\color{red}\xi^r} = - {{\color{forestgreen}P'}\over \rho_0 c_s^2}-{\ell(\ell + 1)\over \rho_0\omega^2 r^2}\left({\color{forestgreen}P'} + \rho_0 {\color{orange}\phi'}\right)\]
\[\scriptsize {\mathrm d {\color{forestgreen}P'} \over \mathrm d r} + {g \over c_s^2} {\color{forestgreen}P'}= \rho_0 (\omega^2 - N^2) {\color{red}\xi^r} - \rho_0 {\color{blue}{\mathrm d \phi'\over \mathrm d r}}\]
\[\scriptsize{1 \over r^2}{\mathrm d \over \mathrm d r}\left(r^2 {\color{blue}{\mathrm d \phi'\over \mathrm d r}} \right) = {\ell(\ell + 1) \over r^2} {\color{orange}\phi'} + 4 \pi G \left({{\color{forestgreen}P'} \over c_s^2} + {\rho_0 N^2\over g}{\color{red}\xi^r}\right)\]
\[\scriptsize {\mathrm d {\color{orange}\phi'}\over \mathrm d r} = {\color{blue}{\mathrm d \phi'\over \mathrm d r}}\]
With judicious change of dynamical variables
to \(\xi, \eta, P, S\), one may write
as \[
\left({\mathrm{d}^2\over\mathrm{d}r^2} +
\mathbf{C}{\mathrm{d}\over\mathrm{d}r} +
\mathbf{D}\right)\begin{bmatrix}\eta\\P\end{bmatrix} = 0.
\]
Fractional acoustic radial coordinate: \(t(r) = \int_0^r \mathrm d r/ c_s\)
Rescaled eigenfunctions: \(\psi = \xi_r \sqrt{r^2 \rho c_s}\)
\[ \begin{bmatrix}\eta\\P\end{bmatrix} \sim \left(\mathbf{Y}_0 + {1\over\omega}\mathbf{Y}_1 + {1\over\omega^2}\mathbf{Y}_2 + \ldots \right)\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix}. \] One solves for \(Y_{i,jk}\) by inserting this expression back into 2nd-order ODE and exploiting the recurrence relation \[ {\mathrm d \over \mathrm d t}\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix} = \begin{bmatrix}0 & \omega \\ - \omega + {\left(\ell + {1\over 2}\right)^2\over \omega t^2} & -{1\over t}\end{bmatrix}\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix}. \]
For \(x \gg 1\), \[ \small \begin{aligned} J_{\ell + {1\over2}}(x) &\sim \sqrt{2\over \pi x} \left[\sin\left(x - {\ell \pi \over 2}\right) + {\ell(\ell+1)\over 2x}\cos\left(x - {\ell \pi \over 2}\right) \right] + \mathcal{O}\left(1\over x^{5/2}\right);\\ J'_{\ell + {1\over2}}(x) &\sim \sqrt{2\over \pi x} \left[\cos\left(x - {\ell \pi \over 2}\right) - {\ell(\ell+1) + 1\over 2x}\sin\left(x - {\ell \pi \over 2}\right) \right] + \mathcal{O}\left(1\over x^{5/2}\right),\label{eq:hankel} \end{aligned} \]
\[a \sin \phi + b \cos \phi = \sqrt{a^2 + b^2} \sin \left(\phi + \arctan \left[b \over a \right]\right)\]
Defining \(\psi = \xi_r \sqrt{r^2 c_s \rho},\) \[ \begin{aligned} \psi_\text{inner} &\propto \left[{1\over\omega}\left(-{y_{1,12}(t)\over y_{0,11}(t)} + {1 \over 2}{\mathrm d \over \mathrm d t}\log\left[c_s \over h r^2\right] + {1 \over 2t}\right) + \mathcal{O}\left(1\over\omega^3\right)\right]J_{\ell + {1\over2}}(\omega t) \\&+ \left[1 + \mathcal{O}\left(1\over\omega^2\right)\right]J'_{\ell + {1\over2}}(\omega t) \\&\propto \cos\left[\omega t - {\ell \pi \over 2} + \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right)\right]; \\\Theta &= {1\over\omega}\left[A_0(t) + \ell(\ell+1)A_\ell(t)\right].\label{eq:arctan} \end{aligned} \]
Defining \(\psi = \xi_r \sqrt{r^2 c_s \rho},\) \[ \small\psi_\text{inner} \equiv A(t) \sin \left[\omega t - {\ell \pi \over 2} + \delta_\ell(\omega, t)\right] \]
In the atmosphere, one may show that \[ \small\psi_\text{outer} \sim A(t) \sin \left[\omega (t - T) + \alpha_\ell(\omega, t)\right] \]
If \(\omega\) is an
eigenvalue,
the arguments of these sinusoids must match up to sign: \[\small\omega_n T + \delta_\ell(\omega_n, t) -
\alpha_\ell(\omega_n, t) = \pi\left(n + {\ell \over
2}\right).\]