Understanding
Mixed Modes

(for fun and for profit)

Joel Ong
Hubble Fellow, Univ. of Hawaiʻi at Mānoa

November 7, 2024

I.
Solar-like Oscillations

How do we know anything?

xkcd #2347: Munroe (2020)

physics of stellar interiors

quantitative

astronomy & astrophysics

from Jeffery & Saio (2016)
 
 

SOHO EIT Image (2016)

HMI Dopplergram (2017)

(RHD simulations courtesy of Joel D. Tanner)

Convection excites
pressure waves (p-modes).

\(\ell = 0\) MDI Doppler velocities

Power spectra of MDI dopplergrams

\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]

(roughly 5-minute oscillations)

p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)

Stochastic,
broad-band
excitation

Solar-like oscillators from 1995 onwards: n = 15; from Arentoft+ (2008)

Telescopes can only point at one star at time…

…and not all interesting stars are bright.

Required photometric stability not achievable from ground

MOST (2003-2014)
CoRoT (2006-2013)
Kepler & K2 (2009-2016)
TESS (2018—)

\[ \begin{aligned} {\Delta\nu} & \sim 1/t_\text{cross} \sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim{g/c_s} \sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]

\[V_\text{osc} \sim L / M\]

Seismology as a Tool

Global Properties give Masses and Radii

\[ \begin{aligned} {\Delta\nu} &\sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]

\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]

All-Sky Mass Mapping: Hon+ 2021

\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]

Many Mode Frequencies constrain Structure

Probes of the internal states of stars … now return constraints on stellar structure previously only theorized. —Astro 2020
Decadal Survey

(e.g. Bellinger+ 2017, 2019; Pedersen+ 2018;
Vanlaer+ 2023; Buchele+ 2024)

Bellinger+ 2019

Relative difference in isothermal sound speed

II.
Mixed Modes

Evolved stars dominate our asteroseismic sample.

(e.g. only \(\sim 100\) Kepler main-sequence stars)

Kepler Sample (from Yu+ 2020)

Pressure waves (p-modes)
propagate isotropically.

Buoyancy waves (g-modes)
propagate anisotropically.

(proxy for age \(\to\))

Mixed modes exhibit avoided crossings
between underlying p- and g-modes.

Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]

Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]

A Crash Course in Wave Propagation:
The JWKB Approximation

Simple Wave Equation

\[\huge {\partial^2 \over \partial t^2}f(t, \mathbf{x}) = c_s^2 \nabla^2 f(t, \mathbf{x})\]

\[\huge -\omega^2 \hat{f}(\omega, \mathbf{x}) = c_s^2 \nabla^2 \hat{f}(\omega, \mathbf{x})\]

\[\huge -\omega^2 \hat{f}(\omega, \mathbf{k}) = -c_s^2 |\mathbf{k}|^2 \hat{f}(\omega, \mathbf{k})\]

Dispersion relation: \[\boxed{\huge \omega^2 = c_s^2 |\mathbf{k}|^2}\]

More Complicated Wave Equation

\[\huge {\partial^2 \over \partial t^2}f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]

\[\huge -\omega^2 f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]

\[\large \nabla^2 f = -\left({\omega^2 - \omega_\text{ac}^2\over c_s^2}\right) f \equiv -k^2 f\]

Wave propagates where \(k^2(r, \omega) > 0\),
and decays where \(k^2(r, \omega) < 0\).

Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)

\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]

\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]

\[{\color{red} \omega_g < N, S_\ell}\]

\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)

\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum

\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]

\[{\color{gray} \omega_p > S_\ell, N}\]

III.
Isolating Mixed Modes “Therefore what God has joined together, let not man separate.” — Mark 10:9

LCAOs give Molecular Orbitals

I stole this from a chemistry textbook

\[\Large \hat H \left|n\right> = \left(\hat T + \hat V\right)\left|n\right> = E_n \left|n\right>\]

\[\large {\color{blue}{\hat H_1}} \left|n\right> = \left(\hat T + \hat V_1\right)\left|n\right> = {\color{blue}E_n \left|n\right>}\]

\[\large {\color{orange}{\hat H_2}} \left|n\right> = \left(\hat T + \hat V_2\right)\left|n\right> = {\color{orange}E_n \left|n\right>}\]

\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]

Energies and Mixing Coefficients
of Molecular Orbitals

\[\left|\psi_\text{mol}\right> = {\color{blue}\sum_i c_{1,i}\left|\psi_{1,i}\right>} + {\color{orange}\sum_j c_{2,j}\left|\psi_{2,j}\right>}.\]

Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem

\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]

\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]

\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]

\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]

\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]

\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]

\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]

\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]

Mixed Modes as
Acoustic “Molecular Orbitals”

\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]

Mixed mode frequencies and mixing coefficients can likewise be found by solving the
Generalised Hermitian Eigenvalue Problem:
\[ \scriptsize \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \] \[ \small L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, \hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle \]

(Ong & Basu 2020)

IV.
Using Isolated Modes

g-modes: Core Rotation

e.g. Mosser+ 2012; Gehan+ 2018; Ong & Gehan 2023

\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 4\pi \nu^2}\]

Core rotation measurements: Gehan+ 2018

(\(\leftarrow\) proxy for age)

g-modes: Core Magnetism

Li et al. Nat. 2022:
Asymmetric splittings probe
core magnetic fields

(Li+ 2023, Deheuvels+ 2023;
Rui, Ong, Mathis, 2024)

Population studies
of rotation vs. magnetism

(Hatt, Ong et al., 2024)

\[\scriptsize \delta \nu_{\text{mag}, g, \ell=1} \sim {m^2 \over \nu^3}\]

What about p-modes?

The Small Frequency Separation \(\delta\nu_{02}\)

Integral estimator from asymptotic analysis
(Tassoul 1990, Roxburgh & Vorontsov 1994):

\[\delta\nu_{02} \sim \Delta\nu \cdot {2 \ell + 3 \over \pi^2 \nu}\left(\int_0^R{1\over r}{\mathrm d c_s \over \mathrm d r}\ \mathrm d r - {c_s(R) \over R}\right)\]

\[r_{02} \sim {2 \ell + 3 \over \pi^2 \nu}\left(\int_0^R{1\over r}{\mathrm d c_s \over \mathrm d r}\ \mathrm d r - {c_s(R) \over R}\right)\]

Traditional interpretation:
direct probe of internal structure

from White+ (2011)

Dashed lines = isochrones,
spaced by 1 Gyr

(n.b. typical Kepler uncertainty of \(<1\ \mu\)Hz)

from White+ (2011)

Main-sequence ages (\(\Delta\nu \gtrsim 50\ \mu\)Hz)
can be read off JCD or \(r_{02}\) diagrams directly.
(\(r_{02} = \delta\nu_{02}/\Delta\nu_1\))

What’s going on here??

(Ong & Basu 2020)

\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]

\[\iff\]

\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{darkorange}\sum_j c_{2,j} \psi_{2,j}}\]

Fast numerical calculations of pure quadrupole p-modes,
and therefore \(\delta\nu_{02}\) or \(r_{02}\), are now possible
in sub- and red giants.

\[\left<\delta\nu_{02}\right> = \left<\nu_{n, \ell = 0} - \nu_{n-1, \ell = 2}\right>\]

\[\delta\nu_{02,\text{Tassoul}} \sim \int {1 \over r}{\mathrm d c_s\over \mathrm d r} \mathrm d r\]

?????
Catastrophe!

V.
Resolving an
Asteroseismic Catastrophe

Where does this asymptotic expression
even come from?

Fractional acoustic radial coordinate: \(t(r) = \int_0^r \mathrm d r/ c_s\)

\(\psi = \xi_r \sqrt{r^2 \rho c_s} \sim \sin \left[\omega t + \delta_\ell\right]\)

\[\huge r_{02}(\omega) \sim {1 \over \pi} \left(\delta_2(\omega) - \delta_0(\omega)\right)\]

What went wrong?

In deriving the classical estimator, one assumes \[ \begin{aligned} \delta_\ell(\omega,t) \sim \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right) &\sim \Theta; \\ \implies \exists t_0 \in (0, T), \text{ s.t. } \Theta(t_0) &\ll 1. \end{aligned} \] How valid is this assumption?

\[\Theta(\omega ,t) = {1 \over \omega}\left(A_0(t) + \ell(\ell + 1) A_\ell(t)\right)\]

\[\Theta(\omega ,t) = {1 \over \omega}\left(A_0(t) + \ell(\ell + 1) A_\ell(t)\right)\]

Assumption holds for MS stars,
but breaks for SGs and RGs.

Remediation

The small-angle approximation assumes \[ \begin{aligned} \delta_\ell + {\pi \over 2} &= \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right) \\ &= \arctan\left[\Theta - {\ell (\ell + 1) \over 2 \omega t}\right] + \arctan\left[{\ell (\ell + 1) \over 2 \omega t}\right] &\sim \Theta. \end{aligned} \] If this approximation is not made, then one obtains that

\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3)\over \pi} {\partial \delta_\ell \over \partial [\ell(\ell+1)]} \]

\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3) \over \pi}\left[{a_\ell(T)/\omega\over 1 + \left[A_0(T) + \ell(\ell+1)a_\ell(T)\right]^2/\omega^2} + {1 \over 2 \omega T}\right]. \]

Remediation

\[ r_{\ell, \ell + 2} \sim {2(2\ell + 3) \over \pi}\left[{a_\ell(T)/\omega\over 1 + \left[A_0(T) + \ell(\ell+1)a_\ell(T)\right]^2/\omega^2} + {1 \over 2 \omega T}\right]. \]

as \(A_0, a_\ell \to 0, r_{02} \to {2\ell + 3\over\omega}(a_\ell + 1/T)\)
this is the expression of Tassoul (1990).

as \(A_0 \to \infty, r_{02} \to {2\ell + 3\over\pi \omega T}\)
this means \(r_{02} \sim \Delta\nu / \nu_\text{max}\), or equivalently \(\delta\nu_{02} \sim \Delta\nu^2 / \nu_\text{max}\),
with no dependence on internal structure??

This feature is not reproduced by asymptotic analysis.
Observationally interesting?

VI.
The Subgiant-
Red Giant Transition

Inner Phase Shifts

Interpreting Phenomenology

The “knee” in the JCD diagram occurs
when the convective envelope’s boundary
passes a specific distance from the centre of the star:
about 1/3 of a wavelength at \(\nu_\text{max}\).

Observational Confirmation!

Knee feature is
bourne out observationally by \(\delta\nu_{02}\) measurements of the open cluster M67.

(Reyes, Stello, Ong et al., Nature, in review)

(RHD simulations courtesy of Joel D. Tanner)

Sensitivity to Overshoot

TESS GI (funded for Cycle 7!)

Summary

Isolation and Coupling of Mixed Modes

Mixed modes may be described as
“acoustic molecular orbitals”:
Ong & Basu 2020, ApJ, 898, 127

Resolving an Asteroseismic Catastrophe

We attribute singular behaviour in an integral estimator
for the small separation \(\delta\nu_{02}\) to
a broken small-angle approximation.
(Ong et al., submitted to ApJ)

We apply this to interpret a
recently discovered observational feature
in asteroseismic isochrones, which is sensitive to
convective boundary mixing.
(Reyes et al., submitted to Nature)

Understanding Mixed Modes (for Fun and Profit)

Access to g-modes has usually been the main focus
when studying gravitoacoustic mixed modes.

A better understanding of their coupling,
isolating their p-mode components,
allows us to observationally constrain
convective boundary mixing.

\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]

BACKUP SLIDES

Rotational Splittings

Full Derivation of Small-angle Approximation

Where does this asymptotic expression
even come from?

1. The Pulsation Equations

\[\scriptsize{1 \over r^2}{\mathrm d \over \mathrm d r}\left(r^2 {\color{red}\xi^r}\right) - {g \over c_s^2} {\color{red}\xi^r} = - {{\color{forestgreen}P'}\over \rho_0 c_s^2}-{\ell(\ell + 1)\over \rho_0\omega^2 r^2}\left({\color{forestgreen}P'} + \rho_0 {\color{orange}\phi'}\right)\]

\[\scriptsize {\mathrm d {\color{forestgreen}P'} \over \mathrm d r} + {g \over c_s^2} {\color{forestgreen}P'}= \rho_0 (\omega^2 - N^2) {\color{red}\xi^r} - \rho_0 {\color{blue}{\mathrm d \phi'\over \mathrm d r}}\]

\[\scriptsize{1 \over r^2}{\mathrm d \over \mathrm d r}\left(r^2 {\color{blue}{\mathrm d \phi'\over \mathrm d r}} \right) = {\ell(\ell + 1) \over r^2} {\color{orange}\phi'} + 4 \pi G \left({{\color{forestgreen}P'} \over c_s^2} + {\rho_0 N^2\over g}{\color{red}\xi^r}\right)\]

\[\scriptsize {\mathrm d {\color{orange}\phi'}\over \mathrm d r} = {\color{blue}{\mathrm d \phi'\over \mathrm d r}}\]

2. Change of Variables

With judicious change of dynamical variables
to \(\xi, \eta, P, S\), one may write as \[ \left({\mathrm{d}^2\over\mathrm{d}r^2} + \mathbf{C}{\mathrm{d}\over\mathrm{d}r} + \mathbf{D}\right)\begin{bmatrix}\eta\\P\end{bmatrix} = 0. \]

Asymptotic Behaviour of the Eigenfunctions

Fractional acoustic radial coordinate: \(t(r) = \int_0^r \mathrm d r/ c_s\)

Rescaled eigenfunctions: \(\psi = \xi_r \sqrt{r^2 \rho c_s}\)

3. Ansatz: Asymptotic Expansion

\[ \begin{bmatrix}\eta\\P\end{bmatrix} \sim \left(\mathbf{Y}_0 + {1\over\omega}\mathbf{Y}_1 + {1\over\omega^2}\mathbf{Y}_2 + \ldots \right)\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix}. \] One solves for \(Y_{i,jk}\) by inserting this expression back into 2nd-order ODE and exploiting the recurrence relation \[ {\mathrm d \over \mathrm d t}\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix} = \begin{bmatrix}0 & \omega \\ - \omega + {\left(\ell + {1\over 2}\right)^2\over \omega t^2} & -{1\over t}\end{bmatrix}\begin{bmatrix}J_{\ell + {1\over2}}(\omega t)\\J'_{\ell + {1\over2}}(\omega t)\end{bmatrix}. \]

4. Hankel’s Expansion for Bessel Functions

For \(x \gg 1\), \[ \small \begin{aligned} J_{\ell + {1\over2}}(x) &\sim \sqrt{2\over \pi x} \left[\sin\left(x - {\ell \pi \over 2}\right) + {\ell(\ell+1)\over 2x}\cos\left(x - {\ell \pi \over 2}\right) \right] + \mathcal{O}\left(1\over x^{5/2}\right);\\ J'_{\ell + {1\over2}}(x) &\sim \sqrt{2\over \pi x} \left[\cos\left(x - {\ell \pi \over 2}\right) - {\ell(\ell+1) + 1\over 2x}\sin\left(x - {\ell \pi \over 2}\right) \right] + \mathcal{O}\left(1\over x^{5/2}\right),\label{eq:hankel} \end{aligned} \]

(reminder: phasor addition identity)

\[a \sin \phi + b \cos \phi = \sqrt{a^2 + b^2} \sin \left(\phi + \arctan \left[b \over a \right]\right)\]

5. Frequency Eigenvalues

Defining \(\psi = \xi_r \sqrt{r^2 c_s \rho},\) \[ \begin{aligned} \psi_\text{inner} &\propto \left[{1\over\omega}\left(-{y_{1,12}(t)\over y_{0,11}(t)} + {1 \over 2}{\mathrm d \over \mathrm d t}\log\left[c_s \over h r^2\right] + {1 \over 2t}\right) + \mathcal{O}\left(1\over\omega^3\right)\right]J_{\ell + {1\over2}}(\omega t) \\&+ \left[1 + \mathcal{O}\left(1\over\omega^2\right)\right]J'_{\ell + {1\over2}}(\omega t) \\&\propto \cos\left[\omega t - {\ell \pi \over 2} + \arctan\left(\Theta + \mathcal{O}\left(1\over \omega^3\right)\over 1 - {\ell(\ell+1) \over 2\omega t}\Theta + \mathcal{O}\left(1\over \omega^2\right)\right)\right]; \\\Theta &= {1\over\omega}\left[A_0(t) + \ell(\ell+1)A_\ell(t)\right].\label{eq:arctan} \end{aligned} \]

5. Frequency Eigenvalues (ctd.)

Defining \(\psi = \xi_r \sqrt{r^2 c_s \rho},\) \[ \small\psi_\text{inner} \equiv A(t) \sin \left[\omega t - {\ell \pi \over 2} + \delta_\ell(\omega, t)\right] \]

In the atmosphere, one may show that \[ \small\psi_\text{outer} \sim A(t) \sin \left[\omega (t - T) + \alpha_\ell(\omega, t)\right] \]

If \(\omega\) is an eigenvalue,
the arguments of these sinusoids must match up to sign: \[\small\omega_n T + \delta_\ell(\omega_n, t) - \alpha_\ell(\omega_n, t) = \pi\left(n + {\ell \over 2}\right).\]