The Good Vibrations Seminar
Joel Ong
1 December 2021 | Slides at http://hyad.es/talks
Power spectra of MDI dopplergrams
(proxy for age \(\to\))
(proxy for age \(\to\))
Pure p-modes: \[\nu_{n,l} \sim \Delta\nu \left(n + {l \over 2} + \epsilon_{n,l}\right)\]
(proxy for age \(\to\))
(proxy for age \(\to\))
Pure g-modes: \[{1 \over \nu_{n,l}} \sim \Delta\Pi_l \left(n + {l \over 2} + \kappa_{n,l}\right)\]
Mixed modes exhibit avoided crossings
between underlying p- and g-modes.
\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\small\color{orange}N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\]
\[\small\color{blue}S_l^2 = {l(l+1) c_s^2 \over r^2}\]
\[{\color{gray} \omega_p > S_l, N}\]
\[{\color{red} \omega_g < N, S_l}\]
\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\tiny \psi(r) \sim {1 \over \sqrt{k_r}} \left(A \sin \left[\int^r k_r\ \mathrm d r\right] + B \cos \left[\int^r k_r\ \mathrm d r\right]\right)\] \[\tiny \boxed{\tan \Theta_p \cot \Theta_g = {1 \over 4} \exp\left[-2 \int_{r_g}^{r_p} \kappa \ \mathrm d r\right]} \]
(Coupling between oscillators)
Relationship between \((\omega_i, \alpha_i)\) and stellar structure unclear…
\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]
\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]
\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\] Mixed mode frequencies and mixing coefficients can likewise be found by solving the
Generalised Hermitian Eigenvalue Problem: \[
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, \hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020; now also in GYRE v6)
For the Sun, even standard solar models don’t give the right frequencies!
\(\delta M / M \gtrsim 5\%\):
larger than statistical error!
The asteroseismic “surface term”
Consider two stars with identical \(M\) and \(R\),
differing only in the near surface layers: \[\hat{\mathcal{L}}_0\xi_{0,n} = -\omega_{0,n}^2 \xi_{0,n};~~~~\hat{\mathcal{L}}\xi_{n} = -\omega_{n}^2 \xi_{n}.\] We write \[\hat{\mathcal{L}} = \hat{\mathcal{L}}_0 + \lambda {\hat{\mathcal{V}}},\] so that \(\lambda\) interpolates linearly between the two structures.
\[\Large \hat{\mathcal{V}}{\color{red}\xi_\gamma} \to 0\]
\({\color{red}\gamma\text{-modes}}\) are confined to the stellar interior,
so unaffected by surface term
\(\delta\nu_\text{mixed} = (1 - \zeta)\delta\nu_\text{surf}\)
These two operations do not necessarily commute.
Evolved red giant: \(\Delta\nu = 3.9\ \mu\text{Hz}\)
Full vs. Traditional mode coupling
Surface-term corrections
should not reorder mixed modes!
(cf. Ball+ 2018)
First-order approximation yields
systematically lower stellar masses!
(population-level systematic error)
(two different
correction techniques)
Joint posterior distributions for TOI 197
(reference values: Huber+ 2019)
(Ong+ 2021c)
Analysis of mixed modes in terms of the decoupled \(\pi\)- and \(\gamma\)-mode basis is necessary to avoid systematic errors in determining
global properties from asteroseismology,
for both single-target measurements and population statistics.
Three quantum numbers \(n, l, m\): \[ \begin{aligned} l &= 0, 1, 2, \ldots \\ m &= -l, -l+1, \ldots, l-1, l \end{aligned} \]
Zonal (\(m = 0\))
Prograde sectoral
(\(m = +l\))
Retrograde sectoral
(\(m = -l\))
For slow rotators (\(\Omega \ll 2\pi\Delta\nu\)),
\[\boxed{\delta\omega_{nlm} \sim m \beta_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
(\(\equiv m \Omega \beta_{nl}\) for solid-body rotation).
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Sensitivity of pure p-modes is distributed
throughout entire stellar structure
(but concentrated at surface)
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation.
Zonal + \(\text{\color{orange}prograde}\) and \(\text{\color{blue}retrograde}\) sectoral
\(\pi\)-modes and \(\gamma\)-modes
\[\text{Asymmetry: }\psi = {(\nu_+ - \nu_0) - (\nu_0 - \nu_-) \over \nu_+ - \nu_-} = 0\]
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
Dipole modes (\(l = 1\))
\(\Delta\nu = 17\ \mu\)Hz; \(\Omega_\text{core}/\Omega_\text{surf} = 10\)
Quadrupole modes (\(l = 2\))
Dipole modes (\(l = 1\))
\(\Delta\nu = 5\ \mu\)Hz; \(\Omega_\text{core}/\Omega_\text{surf} = 10\)
Buried B-field: \(\psi = 0.28\)
(from Bugnet+ 2021)
Avoided crossings must be accounted for
to make credible statements about stellar rotation
and magnetic fields in evolved stars.
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Even the most p-dominated mixed modes
are sensitive to core rotation!
Rotational kernel for p-dominated mixed mode
\[ \small \begin{aligned} \delta\omega_i = m \beta_i \int_0^R \Omega(r) K_i(r) \mathrm d r &\sim \sum_j A_{ij} \Omega_j \\ \implies \Omega_j &\sim \sum_i A^{+}_{ji} \delta\omega_i? \end{aligned} \]
Decomposition of wave operator into purely acoustic/buoyant propagation terms and their remainder operators
permits closed-form evaluation of coupling matrix elements.
Ong and Basu (2020)
Traditional surface term corrections handle mode coupling
only to first order, if at all.
More sophisticated techniques are required for evolved stars,
to avoid systematic errors in global properties.
Ong, Basu, Roxburgh (2021); Ong, Basu, Lund, Viani, Bieryla, Latham (2021)
Radial differential rotation yields
asymmetric rotational splitting on mixed modes.
Symmetrisation in \(\pi/\gamma\) basis is mandatory
for accurate interpretation of observed splitting
(e.g. correct diagnosis of magnetic fields).
Ong, Bugnet & Basu (in prep.)
We analytically decouple mixed modes into \(\pi\)- and \(\gamma\)-like components. This permits the analysis and interpretation of both the surface term, as well as of rotational splitting, in evolved stars.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}.\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{yale}.\text{edu}\]
\[\nu_\text{model} \mapsto \nu_\text{corr} = \nu_\text{model} + \delta\nu_{nl,\text{surf}},\] with corrections depending only on the model as \(\delta\nu_{nl,\text{surf}} \sim f(\nu_{nl}; x)\).
Corrections with free parameters \(\theta \in \Theta\) as \(\delta\nu_{nl,\text{surf}} \sim f(\nu_{nl}; x; \theta)\).
\[\tiny {\text{e.g. Ball \& Gizon (2014) correction: }\delta\nu_{nl,\text{surf}} \sim \left(a_{-1} \left(\nu_{nl}\right)^{-1} + a_{3} \left(\nu_{nl}\right)^{3}\right) / I_{nl}}\]
\[\begin{aligned} \text{e.g. } r_{02, n} = {\nu_{n,0} - \nu_{n-1,2} \over \nu_{n,1} - \nu_{n-1,1}} \end{aligned}\]
Interpretation as surface-independent functions of frequency:
use these to constrain model directly (Otí Floranes et al. 2005)
\[\begin{aligned} r_{02, n} & \sim \delta_2(\nu_{n,0})\\ r_{01, n} \sim \delta_1(\nu_{n,0})&; ~~~ r_{10, n} \sim \delta_1(\nu_{n,1}) \end{aligned}\]
\[\nu_{nl} \sim \Delta\nu\left(n + {l \over 2} + \epsilon_{nl}\right), \implies \epsilon_{nl} = {\nu_{nl} \over \Delta\nu} - n - {l \over 2} \equiv{\epsilon_l(\nu_{nl})}\] \[ \text{Compute } \mathcal{E}_l(\nu^\text{obs}_{nl}) = \epsilon^\text{obs}_{l}(\nu^\text{obs}_{nl}) - \epsilon^\text{model}_{l}(\nu^\text{obs}_{nl}). \]
All of the \(\mathcal{E}_l\) should collapse to a single function if the structural differences are localised to the surface (Roxburgh 2016).
Use of transformed variables such that \[O_{nl,\text{surf}} \sim f(\nu_{nl})\]
(where the structure of \(f\) is left underspecified)
Interpolation required to compare
\(f^\text{obs}(\nu_\text{obs})\) vs. \(f^\text{model}(\nu_\text{obs})\) (instead of \(f^\text{model}(\nu_\text{model})\)).
For each parameter \(P\), we consider normalised differences \[z_{P, \text{BG14 vs. other}} = {\mu_{P, \text{other}} - \mu_{P, \text{BG14}} \over \sqrt{\sigma^2_{P, \text{BG14}} + \sigma^2_{P, \text{other}}}}\]
We examine the distribution of these differences
over a large* sample of stars, ceteris paribus
*Not actually very large
Main-sequence stars
\[\tiny{(\text{Kepler LEGACY sample}: N = 66)}\]
General agreement on the
inferred masses…
\(z\)-score for mass
…and on the inferred radii.
\(z\)-score for radius
Parameter estimates generally
agree quite robustly…
\(z\)-score for age
… but not for all parameters.
\(z\)-score for initial helium abundance
First-ascent red giants
\[\tiny{(\text{NGC 6791}: N = 29; l=0,2\text{ only})}\]
Nonparametric methods appear
to agree with each other…
\(z\)-score for initial helium abundance
…but not with our
fiducial parameterisation…
\(z\)-score for mass
…and these offsets appear
to be systematic.
\(z\)-score for age
NGC 6791 is an open cluster — what about the
actual distribution of stellar properties?
Stars should be coeval, so red giants should be of similar mass and age.
Disagreements on the age scale?
Disagreements on the mass distribution?
Other parametric methods yield comparable internal scatter!
Different treatments of the surface term exhibit qualitative systematic differences for main-sequence stars vs. red giants.
What happens in between?
From operator perturbation problem, \(\hat{\mathcal{L}} = \hat{\mathcal{L}}_0 + \lambda {\hat{\mathcal{V}}},\) construct corresponding matrix perturbation problem by evaluating \[V_{ij} = \int \rho\ \vec{\xi}_{\pi,i} \cdot \hat{\mathcal{V}}\vec{\xi}_{\pi,j}\ \mathrm d^3 x.\]
\[\text{``Variational" expression: }\delta\omega_i^2 \sim {\int \rho\ \vec \xi_i\ \delta\hat{\mathcal{L}} (\vec \xi_i)\ \mathrm d^3 x \over \int \rho\ |\vec \xi_i|^2\ \mathrm d^3 x}\]
So long as the off-diagonal entries of the matrix \(\mathbf{V}\) can be specified, existing parametrisations can adapted as (e.g. for BG14): \[ \large \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} + \mathbf{V}_{(a_{-1}, a_{3})} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \]