Joel Ong
Hubble Fellow,
Univ. of Hawaiʻi at Mānoa
IAStrophysical Waves; January 14, 2025
\[\left<\mathbf{x}| \xi_{n \ell m}\right> \hat{=} \vec{\xi}_{n \ell m}(r) Y_\ell^m (\theta, \phi)\]
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
Normal modes satisfy an operator eigenvalue problem
\(\hat{\mathcal{L}}\left|\xi_{n\ell
m}\right> = -\omega^2_{n\ell m}\left|\xi_{n\ell
m}\right>\).
Under a small perturbation \(\hat{\mathcal{L}} \mapsto \hat{\mathcal{L}} + \lambda \hat{\mathcal{V}}\),
\[\begin{aligned} \omega^2_{n\ell m} &\mapsto \omega^2_{n\ell m} - \lambda \left<\xi_{n\ell m}|\hat{\mathcal{V}}|\xi_{n\ell m}\right> + \mathcal{O}\left(\lambda^2\right)\\ &\approx \omega^2_{n\ell m} - \lambda \int \mathrm d^3 x \cdot \rho \left(\vec{\xi}_{n\ell m}^* \hat{\mathcal{V}} \vec{\xi}_{n\ell m}\right) + \mathcal{O}\left(\lambda^2\right). \end{aligned}\]
e.g. for (slow) rotation in particular
\[ \omega^2 \mapsto \omega^2 + 2 m\ b_{n\ell m} \omega \int \Omega(r) K_{nlm}(r) \mathrm dr \]
For slow rotation, \[\boxed{\delta\omega_{nlm} \sim m b_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
Variations in \(\delta\omega_\text{rot}\) are
radial differential rotation.
\[\boxed{{\color{orange}{\delta\omega_{nlm}}} \sim {\color[RGB]{0,100,255}{m b_{nl} \sum_i {\color{black}{\Omega(r_i)}} K_{nl}(r_i) \Delta r_i}}}\] is of the form \({\color[RGB]{0,100,255}\mathbf{A}}\mathbf{x} = {\color{orange}\mathbf{b}}\).
i.e. Inferring the rotational profile
\(\Omega(r)\) is a linear
inverse problem.
Rotational Inversions
\[\scriptsize\begin{aligned} \int \Omega(r) {\color[RGB]{0,100,255}\left(\sum_i c_i K_{i}(r)\right)} \mathrm d r &\sim \sum_{i} \left(c_i \over m_i b_{i} \right) \delta\omega_{\mathrm{rot}, i} \\ & \to \boxed{\Omega({\color[RGB]{0,100,255}r_0})}\end{aligned}\]
e.g. OLA
(Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; Ong 2024;
etc.)
\(\implies\) we can make measurements of internal rotational structure!
two standard
solar models
\[\huge {{\color{orange}{\delta\omega_i \over \omega_i}} \approx {\color[RGB]{0,100,255}{\int K_{\rho|c_s^2, i}(r)}} {\delta\rho \over \rho}{\color[RGB]{0,100,255}{\mathrm d r}} + {\color[RGB]{0,100,255}{\int K_{c_s^2|\rho, i}(r)}} {\delta c_s^2 \over c_s^2}{\color[RGB]{0,100,255}{\mathrm d r}}} \]
\[{\Large{\color[RGB]{0,100,255}\mathbf{A}}\mathbf{x} = {\color{orange}\mathbf{b}}}\]
Evolved stars dominate our asteroseismic sample.
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_\ell}\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_\ell, N}\]
p-modes:
\[\large\boxed{\nu = \Delta\nu\left(n + {\ell \over 2} + \epsilon_{p,\ell}\right)}\]
\[\small\Delta\nu \sim \left(2 \int {\mathrm d r \over c_s}\right)^{-1}\]
g-modes:
\[\large\boxed{{1 \over \nu} = \Delta\Pi_\ell \left(n + {\ell \over 2} + \epsilon_{g, \ell}\right)}\]
\[\small\Delta\Pi_\ell \sim {2\pi^2 \over \sqrt{\ell(\ell+1)}}\left(\int {N \over r} \mathrm d r\right)^{-1}\]
\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\small {\color{red}\cos \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right] = 0}\]
\[\small {\color{gray}\sin \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right] = 0}\]
\[\small {\color{gray}\tan \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right]} {\color{red}\cot \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right]} = {1 \over 4} \exp \left[-2 \int_{r_{2,g}}^{r_{1,p}} |k_r| \mathrm d r\right]\]
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]
Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
pure p
pure g
mixed
Structure perturbations
do not reorder mixed modes!
(cf. Ball+ 2018)
\[\Large \hat H \left|n\right> = \left(\hat T + \hat V\right)\left|n\right> = E_n \left|n\right>\]
\[\large {\color{blue}{\hat H_1}} \left|n\right> = \left(\hat T + \hat V_1\right)\left|n\right> = {\color{blue}E_n \left|n\right>}\]
\[\large {\color{orange}{\hat H_2}} \left|n\right> = \left(\hat T + \hat V_2\right)\left|n\right> = {\color{orange}E_n \left|n\right>}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\left|\psi_\text{mol}\right> = {\color{blue}\sum_i c_{1,i}\left|\psi_{1,i}\right>} + {\color{orange}\sum_j c_{2,j}\left|\psi_{2,j}\right>}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]
Mixed mode
frequencies and mixing coefficients can likewise be found by solving
the
Generalised Hermitian Eigenvalue Problem: \[
\scriptsize
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\
\mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i},
\hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}}
= \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020; Ong & Gehan 2023)
\(\pi/\gamma\) basis of kernels has different localisation properties compared to the natural basis of normal modes.
from Ong, Bugnet & Basu 2022
Rotation matrices are essentially diagonal in \(\pi/\gamma\)-mode basis:
Entire matrix can may be meaningfully constrained observationally.
(this is not the case with mixed modes!)
Pulsation axes may differ between mode cavities if their rotational axes are misaligned.
e.g. Ong et al. 2024; Ong 2025
New analytical tools are required to render perturbative methods tractable when applied to stars with multiple mode cavities (e.g. gravitoacoustic mixed modes in sub/red giants).
Weakly-coupled mixed modes are linear combinations of isolated modes (just as MOs are LCAOs).
Also enabling new discoveries of star-planet
interactions
(planet engulfment and core-envelope misalignment).
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
Very high \(\mathrm{A(Li)}\),
but otherwise innocuous
\[\ell = 0,2?\]
But Kepler says \(\ell =
0\) have to live here!
(and theory says so too…)
Rotational splittings from seismology:
\(\implies P_\text{rot} \sim 115\ \mathrm{d}?\)
Rotational signal probably got
detrended away
by systematic corrections…
Very suggestive…
but is this real?
Probably yes!
Asteroseismology:
Photometry:
Spectroscopy:
Gaia DR3:
Gaia RV scatter rules out
large RV semiamplitudes…
\(P_\text{orb} \gg 99\ \mathrm{d}\)
cannot spin star
up to 99-day rotational period…
Remaining permissible orbits are
unstable to tidal dissipation!
\(\implies\) ENGULFMENT?
\(\forall \ell, \exists (2\ell + 1) \times
(2\ell + 1)\) matrices
\(\mathbf{J}_x^\ell\), \(\mathbf{J}_y^\ell\), \(\mathbf{J}_z^\ell\) satisfying commutation
relations
\(\left[\mathbf{J}_i, \mathbf{J}_j\right] =
-i\epsilon_{ijk}\mathbf{J}_k\), with
\(\mathbf{J}_z \hat{=} \mathrm{diag}(-\ell,
-\ell + 1 \ldots \ell - 1, \ell).\)
\[\small\mathbf{J}_x \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}; \mathbf{J}_y \hat{=} {1 \over \sqrt{2}}\begin{bmatrix}0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0\end{bmatrix}; \mathbf{J}_z \hat{=} \begin{bmatrix}-1 & 0 & 0 \\ 0 &0 &0 \\ 0& 0 &1\end{bmatrix}.\]
For fixed \(m\) (to leading order):
\[\left(-\mathbf{\Omega}_0^2 + 2 \omega m \mathbf{R} + \omega^2 \mathbf{\Delta}\right)\mathbf{c} = 0\]
For fixed \(n\) (to leading order):
\[(-\omega_0^2 \mathbb{1}_{2\ell+1} + 2 \omega \mathbf{J}_z R_{n,n} + \omega^2 \mathbb{1}_{2\ell+1})\mathbf{y} = 0\]
\[\vec{\xi}_{n\ell m}(r, \theta, \varphi) = \vec{\xi}_{n\ell}(r) Y_\ell^m(\theta, \phi) \iff \underbrace{\tilde{R}_{n, n', m, m'} = R_{n,n'} J_{m,m'}}_{\text{this is a }\textbf{tensor product}!}\]
\[\implies \left(-\mathbf{\Omega_0}^2 \otimes \mathbb{1}_{2\ell+1} + 2 \omega \underbrace{\mathbf{R} \otimes \mathbf{J}_z}_{\tilde{\mathbf{R}}} + \omega^2 \mathbf{\Delta} \otimes \mathbb{1}_{2\ell+1}\right)\mathbf{x} = 0\]
Let’s associate with each mass shell at \(r\) both \(\Omega(r)\)
(as is customary), and also an axis \(\hat{\mathbf{n}}(r) =\sum_i n_i
\mathbf{e}_i\).
\[\small \begin{aligned} \mathbf{R}_{n\ell, n\ell} &= b_{n\ell}\int {\mathbf{d}^\ell}^\dagger(\beta(r)) \Omega(r) \mathbf{J}_z {\mathbf{d}^\ell}(\beta(r))\ K(r)\ \mathrm{d} r\\ &= b_{n\ell}\int \Omega(r) (\hat{\mathbf{n}} \cdot \vec{\mathbf{J}})\ K(r)\ \mathrm{d} r\\ &= \boxed{b_{n\ell}\left(\int \vec{\mathbf{\Omega}}(r) K(r)\ \mathrm{d} r\right) \cdot \vec{\mathbf{J}}}. \end{aligned} \]
\[ \boxed{\tilde{\mathbf{R}} = \int \mathbf{K}\otimes\left(\Omega_\text{rot}(r)\ \hat{\mathbf{n}}\cdot \vec{\mathbf{J}}\right)\ \mathrm{d}r} \]
\(\implies\) For each mode, AM
matrix is
specified by usual vector addition.
We only assume that the pure p- and g-mode
solutions
are separately amenable to separation of
variables;
the mixed-mode eigenfunctions need not be.
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} + 2 \omega \begin{bmatrix} {\color{forestgreen}\tilde{\mathbf{R}}_\pi} & 0 \\ 0 & {\color{forestgreen}\tilde{\mathbf{R}}_\gamma}\end{bmatrix} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \otimes \mathbb{1}_{2\ell+1} \right)\mathbf{x} = 0. \]
\(\beta = 0\)
\(\beta = {\pi\over10}\)
\(\beta = {\pi\over2}\)
\(\beta = \pi\)
From Huber et al. 2013
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation
in two zones (core vs. envelope).
Cumulative sensitivity \(b(r)\)
\[b_i(r) = b_i \int_0^r K_i(r') \mathrm d r'\]
Even the most p-dominated mixed modes
are sensitive to core rotation!
Cumulative sensitivity \(b(r)\)
From Huber et al. 2013
Caveats:
Model-dependence? Short Cadence?
Amplitudes? Linewidths?