The Future
of Asteroseismology

Joel Ong
Hubble Fellow, Univ. of Hawaiʻi at Mānoa

Columbia University, January 31, 2024

I.
The Past

How do we know anything?

xkcd #2347: Munroe (2020)

physics of stellar interiors

quantitative

astronomy & astrophysics

Solar-like Oscillations

SOHO EIT Image (2016)

HMI Dopplergram (2017)

(RHD simulations courtesy of Joel D. Tanner)

Convection excites
pressure waves (p-modes).

\(\ell = 0\) MDI Doppler velocities

Power spectra of MDI dopplergrams

\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]

(roughly 5-minute oscillations)

p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)

Stochastic,
broad-band
excitation

\[ \begin{aligned} {\Delta\nu} & \sim 1/t_\text{cross} \sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim{g/c_s} \sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]

\[V_\text{osc} \sim L / M\]

Solar-like oscillators from 1995 onwards: n = 15; from Arentoft+ (2008)

Telescopes can only point at one star at time…

…and not all interesting stars are bright.

Required photometric stability not achievable from ground

MOST (2003-2014)
CoRoT (2006-2013)
Kepler & K2 (2009-2016)
TESS (2018—)

II.
Seismology as a Tool

Global Properties give Masses and Radii

\[ \begin{aligned} {\Delta\nu} &\sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]

\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]

All-Sky Mass Mapping: Hon+ 2021

\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]

Detailed Seismology gives Precision and Ages

Hare “Zebedee”, Cunha+ incl. Ong (2021);
HPC & pipeline: Ong+ 2021a

Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%;\ {\sigma_M \over M} \lesssim 5 \%;\ \sigma_\text{Age} \lesssim 0.4\ \mathrm{Gyr} \]

Multiplet Splittings give Rotation and Orientation

Multiplet Splittings give Internal Rotation

Rotational inversions constrain differential rotation

(e.g. Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016;
Ong 2024; Ong+ in review, etc.)

Rotational Shear \(\to\) Magnetic Dynamos!

Mode Frequencies constrain Structure

Probes of the internal states of stars … now return constraints on stellar structure previously only theorized. —Astro 2020
Decadal Survey

(e.g. Bellinger+ 2017, 2019; Pedersen+ 2018;
Ong & Basu 2019a, b;
Lindsay, Ong, Basu 2022, 2023, and in review;
Vanlaer+ 2023; Buchele+ 2024)

†: mentoree paper

Bellinger+ 2019

Relative difference in isothermal sound speed

Evolved stars dominate our asteroseismic sample.

\[\large V_\text{osc} \sim L/M\]

Kepler Sample (from Yu+ 2020)
TESS ATL (from Schofield+ 2019)

\(T_\text{eff}/\mathrm{K}\)

\(R/R_\odot\)

Probing the star-planet connection, and non-canonical evolution

e.g. Hon et al. (incl Ong) Nat. 2023;
Ong et al., in review

(also incl. Ong: Huber+ 2019, 2022; Chaplin+2020, Ball+ 2020, 2022; Chontos+ 2021; Jiang+ 2020, 2023; Hill+ 2021; Lillo-Box+ 2021; Gaulme+ 2022; Metcalfe+ 2023; …)

Ong: TASOC WG1, WG2, WG7

Summary

Asteroseismology is a low-investment
yet versatile conceptual instrument
through which stellar metrology,
both global and local,
is made generally possible.

III.
The State of Play

TESS Data: Big Samples!

e.g. Hon+ 2021

We are drowning in data.

More Data = More Problems

The Wrong Trousers: Park et al. 1993

big data deluge

physical interpretation

analytic theory
computational technique
statistical methodology

Case Study: Post-Main-Sequence Sample Bias

Evolved stars dominate our asteroseismic sample.

(e.g. only \(\sim 100\) Kepler main-sequence stars)

Kepler Sample (from Yu+ 2020)

Pressure waves (p-modes)
propagate isotropically.

Buoyancy waves (g-modes)
propagate anisotropically.

(proxy for age \(\to\))

Mixed modes exhibit avoided crossings
between underlying p- and g-modes.

Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]

Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]

Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)

\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]

\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]

\[{\color{red} \omega_g < N, S_\ell}\]

\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)

\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum

\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]

\[{\color{gray} \omega_p > S_\ell, N}\]

\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]

?

(Ong & Basu 2020)

\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]

\[\iff\]

\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{darkorange}\sum_j c_{2,j} \psi_{2,j}}\]

Applications for determination of (sub)giant structure and
properties (Ong+ 2021a, b, c), and internal rotation
(Ong+ 2022, 2023; Ong 2024)

We know more about giant cores
than about the core of our own Sun!

Mixed Modes: Evolutionary Diagnostics

\[\small {1\over \nu_g} \sim \Delta\Pi_\ell\left(n_g + \epsilon_g\right)\]

g-mode Period Spacing \(\Delta\Pi_1/\mathrm{s}\)

p-mode Frequency Spacing \(\Delta\nu/\mu\mathrm{Hz}\)\(\small \nu_p \sim \Delta\nu\left(n_p + {\ell \over 2} + \epsilon_p\right)\)

from Mosser+ (2014)

Single-star electron degeneracy sequence:
deviations → merger remnants?
(Rui+ 2021, Deheuvels+ 2021)

clump stars

first-ascent RGs

(\(\leftarrow\) proxy for age)

Radiative core contracts dramatically off main sequence
\(\implies\) core spins up (if conserving angular momentum)

Mixed modes: Core Rotation

e.g. Mosser+ 2012; Gehan+ 2018; Ong & Gehan 2023

\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 4\pi \nu^2}\]

Core rotation measurements: Gehan+ 2018

(\(\leftarrow\) proxy for age)

Core rotation rates appear not to increase significantly
as cores contract \(\implies\) angular momentum transport?

Mixed modes: Core Magnetism

Li et al. Nat. 2022:
Asymmetric splittings probe
core magnetic fields

(Li+ 2023, Deheuvels+ 2023;
Rui, Ong, Mathis, 2024)

Press Release from Quanta Magazine!

Population studies
of rotation vs. magnetism

(Hatt, Ong et al., in review)

\[\scriptsize \delta \nu_{\text{mag}, g, \ell=1} \sim {m^2 \over \nu^3}\]

†: mentoree paper

†: mentoree paper

Mixed modes: Structural Diagnostics

Glitches in red giants

Probes of core structure
and Main-sequence progenitors

(Vrard+ 2022; Lindsay, Ong, Basu
2022, and in review)

†: mentoree paper

Summary

In the data-rich régime, technique development and theoretical interpretation are, and have been, rate-limiting steps.

IV. The Future

Asteroseismology in the TESS Era

What can rapidly-rotating red giants tell us about mergers, engulfments, and exotic dynamos?

from Ong+ in review

Ong: TESS GI Cycle 6

?

Synergies on the ground

Combining with Photometric surveys — e.g. Ong+ (in review); Gaidos+ incl. Ong (in review)

Seismology from Extreme Precision Radial Velocities (Huber+ incl. Ong in prep.)

Ong: Member, SONG WG1 & WG2; Keck Planet Finder via CPS

?

Some Turbulence Expected

(RHD simulations courtesy of Joel D. Tanner)

Mode amplitudes are usually ignored,
but are entirely determined by turbulent convective driving.

How do we predict mode amplitudes and lifetimes?
&
Why is there a \(\nu_\text{max}\)???
&
How do mode frequencies depend on turbulent stresses?

(Ong+ 2021a,b,c; Li+ 2023; Zhou+ 2020, 2021)

?

Mixing boundaries are pretty important

from Blouin et al. 2023a, b

Massive-Star Avoided Crossings

Nonlinear phenomena are
the primary obstacle to
g-mode inversions.

Will understanding them
(Hoogendam, Ong, in prep.)
permit further
technique development?

from Vanlaer et al. 2023

proxy for age \(\to\)

†: mentoree paper

?

Kepler & K2 (RIP)
TESS (Ongoing)
🇪🇺 PLATO Mission: 2026 (Planned)
Roman: 2026 (Planned)

Statistical sample (Ong: Member, WP 120, 128)

Loads of cluster giants

\(\sim100 \to 10,000++\) stars:
How do we cope with
a deluge of new data?

e.g. Hey, Huber, Ong, et al. in review;
Nielsen, Ong, et al., in prep.
(incl. Ong: Cunha+ 2021; Nielsen+ 2021; Campante+ 2023)

Ong: Member, TASOC WG1, WG2; PLATO WP120, 128

?

Asteroseismology in is the Future

Stellar oscillations uniquely probe very many aspects of
stellar structure, dynamics, and evolution.

New understanding of their theoretical properties
unlocks their use as a tool
(e.g.: RG science from mixed modes).

Large population studies make these measurements
astrophysically interesting.

\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]