Joel Ong
Hubble
Fellow, Univ. of Hawaiʻi at Mānoa
Columbia University, January 31, 2024
physics of stellar interiors
quantitative
astronomy & astrophysics
(RHD simulations courtesy of Joel D. Tanner)
Convection excites
pressure waves (p-modes).
\(\ell = 0\) MDI Doppler velocities
Power spectra of MDI dopplergrams
\[ \begin{aligned} {\Delta\nu_\odot} &\sim 135\ \mathrm{\mu Hz} \\ {\nu_{\text{max},\odot}} &\sim 3090\ \mathrm{\mu Hz} \end{aligned} \]
(roughly 5-minute oscillations)
p-mode frequencies satisfy \(\nu_{n\ell} \sim \Delta\nu\left(n + {\ell \over 2} + \epsilon_\ell(\nu)\right) + \mathcal{O}(1/\nu)\)
Stochastic,
broad-band
excitation
\[ \begin{aligned} {\Delta\nu} & \sim 1/t_\text{cross} \sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim{g/c_s} \sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]
\[V_\text{osc} \sim L / M\]
Telescopes can only point at one star at time…
Required photometric stability not achievable from ground
\[ \begin{aligned} {\Delta\nu} &\sim \sqrt{M/R^3}\\ {\nu_{\text{max}}} &\sim {M/R^2\sqrt{T_\text{eff}}} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
Hare “Zebedee”, Cunha+ incl. Ong (2021);
HPC & pipeline: Ong+ 2021a
Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%;\ {\sigma_M \over M} \lesssim 5 \%;\ \sigma_\text{Age} \lesssim 0.4\ \mathrm{Gyr} \]
Rotational inversions constrain differential rotation
(e.g. Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016;
Ong 2024; Ong+ in review, etc.)
Rotational Shear \(\to\) Magnetic Dynamos!
Probes of the internal states of stars … now return constraints on stellar structure previously only theorized. —Astro 2020
Decadal Survey
(e.g. Bellinger+ 2017, 2019; Pedersen+ 2018;
Ong & Basu 2019a, b;
Lindsay, Ong, Basu 2022†, 2023†,
and in review†;
Vanlaer+ 2023; Buchele+ 2024)
†: mentoree paper
Bellinger+ 2019
Relative difference in isothermal sound speed
Evolved stars dominate our asteroseismic sample.
\[\large V_\text{osc} \sim L/M\]
\(T_\text{eff}/\mathrm{K}\)
\(R/R_\odot\)
Probing the star-planet connection, and non-canonical evolution
e.g. Hon et al. (incl Ong)
Nat. 2023;
Ong et al., in review
(also incl. Ong: Huber+ 2019, 2022; Chaplin+2020, Ball+ 2020, 2022; Chontos+ 2021; Jiang+ 2020, 2023; Hill+ 2021; Lillo-Box+ 2021; Gaulme+ 2022; Metcalfe+ 2023; …)
Ong: TASOC WG1, WG2, WG7
Asteroseismology is a low-investment
yet versatile conceptual instrument
through which stellar metrology,
both global and local,
is made generally possible.
We are drowning in data.
big data deluge
physical interpretation
analytic theory
computational technique
statistical methodology
Evolved stars dominate our asteroseismic sample.
(e.g. only \(\sim 100\) Kepler main-sequence stars)
Pressure waves (p-modes)
propagate isotropically.
Buoyancy waves (g-modes)
propagate anisotropically.
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,\ell} \sim \Delta\nu \left(n_p + {\ell \over 2} + \epsilon_{n,\ell}\right)\]
Pure g-modes: \[{1 \over \nu_{n,\ell}} \sim \Delta\Pi_\ell \left(n_g + {\ell \over 2} + \epsilon_{g, n,\ell}\right)\]
Brute-force numerical solution (quantitative)
vs
JWKB approximation (qualitative)
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_\ell}^2 \over \omega^2}\right)\left(1 - {{\color{darkorange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_\ell}\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_\ell^2 = c_s^2 k_h^2 = {\ell(\ell+1) c_s^2 \over r^2}\] wave angular momentum
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_\ell, N}\]
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
?
(Ong & Basu 2020)
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
\[\iff\]
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{darkorange}\sum_j c_{2,j} \psi_{2,j}}\]
Applications for determination of (sub)giant
structure and
properties (Ong+ 2021a, b, c), and
internal rotation
(Ong+ 2022, 2023; Ong 2024)
We know more about giant cores
than about the core of our own Sun!
\[\small {1\over \nu_g} \sim \Delta\Pi_\ell\left(n_g + \epsilon_g\right)\]
g-mode Period Spacing \(\Delta\Pi_1/\mathrm{s}\)
p-mode Frequency Spacing \(\Delta\nu/\mu\mathrm{Hz}\) — \(\small \nu_p \sim \Delta\nu\left(n_p + {\ell \over 2} + \epsilon_p\right)\)
from Mosser+ (2014)
Single-star electron degeneracy sequence:
deviations → merger remnants?
(Rui+ 2021, Deheuvels+ 2021)
clump stars
first-ascent RGs
(\(\leftarrow\) proxy for age)
Radiative core contracts dramatically off main sequence
\(\implies\) core spins up (if
conserving angular momentum)
e.g. Mosser+ 2012; Gehan+ 2018; Ong & Gehan 2023
\[\delta P_{\text{rot}, g, \ell=1} \sim - {m \Omega_\text{core} \over 4\pi \nu^2}\]
(\(\leftarrow\) proxy for age)
Core rotation rates appear not to increase significantly
as cores contract \(\implies\) angular
momentum transport?
Li et al. Nat. 2022:
Asymmetric splittings probe
core magnetic fields
(Li+ 2023, Deheuvels+ 2023;
Rui, Ong, Mathis, 2024†)
Population studies
of rotation vs. magnetism
(Hatt, Ong et al., in review†)
\[\scriptsize \delta \nu_{\text{mag}, g, \ell=1} \sim {m^2 \over \nu^3}\]
†: mentoree paper
†: mentoree paper
Probes of core structure
and Main-sequence progenitors
(Vrard+ 2022; Lindsay, Ong, Basu
2022†, and in review†)
†: mentoree paper
In the data-rich régime, technique development and theoretical interpretation are, and have been, rate-limiting steps.
What can rapidly-rotating red giants tell us about mergers, engulfments, and exotic dynamos?
Ong: TESS GI Cycle 6
?
Combining with Photometric surveys —
e.g. Ong+ (in review); Gaidos+
incl. Ong (in review)
Seismology from Extreme Precision Radial Velocities
(Huber+ incl. Ong in prep.)
Ong: Member, SONG WG1 & WG2; Keck Planet Finder via CPS
?
(RHD simulations courtesy of Joel D. Tanner)
Mode amplitudes are usually ignored,
but are entirely determined by turbulent convective driving.
How do we predict mode
amplitudes and lifetimes?
&
Why is there a \(\nu_\text{max}\)???
&
How do mode frequencies
depend on turbulent stresses?
(Ong+ 2021a,b,c; Li+ 2023; Zhou+ 2020, 2021)
?
from Blouin et al. 2023a, b
Nonlinear phenomena are
the primary obstacle to
g-mode inversions.
Will understanding
them
(Hoogendam, Ong, in prep.†)
permit further
technique development?
proxy for age \(\to\)
†: mentoree paper
?
Statistical sample (Ong: Member, WP 120, 128)
Loads of cluster giants
\(\sim100 \to 10,000++\)
stars:
How do we cope with
a deluge of new data?
e.g. Hey, Huber, Ong, et al. in review;
Nielsen, Ong, et al., in prep.
(incl. Ong: Cunha+ 2021; Nielsen+
2021; Campante+ 2023)
Ong: Member, TASOC WG1, WG2; PLATO WP120, 128
?
Stellar oscillations uniquely probe very many
aspects of
stellar structure, dynamics, and
evolution.
New understanding of
their theoretical properties
unlocks their use as a tool (e.g.: RG science from mixed
modes).
Large
population studies make these measurements
astrophysically interesting.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]