Colloquium @ Tsinghua University | Slides at http://hyad.es/talks
Joel Ong
February 23, 2023
At first sight it would seem that the deep interior of the sun and stars is less accessible to scientific investigation than any other region of the universe. Our telescopes may probe farther and farther into the depths of space; but how can we ever obtain certain knowledge of that which is hidden behind substantial barriers? What appliance can pierce through the outer layers of a star and test the conditions within? The problem does not appear so hopeless when misleading metaphor is discarded… And the interior of a star is not wholly cut off from such communication.
The Internal Constitution of Stars, 1926
\[\Huge P \sim L^\alpha\]
\[\huge {\partial^2 \over \partial t^2}f = c_s^2 \nabla^2 f\]
\[\huge -\omega^2 f = c_s^2 \nabla^2 f\]
\[\large \nabla^2 f = -{\omega^2 \over c_s^2} f \equiv -|\mathbf{k}|^2 f\]
Dispersion relation: \[\omega^2 = c_s^2 |\mathbf{k}|^2\]
\[\huge {\partial^2 \over \partial t^2}f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\huge -\omega^2 f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\large \nabla^2 f = -\left({\omega^2 - \omega_\text{ac}^2\over c_s^2}\right) f \equiv -k^2 f\]
Wave propagates where \(k^2(r, \omega) > 0\) and decays where \(k^2(r, \omega) < 0\).
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_l^2 = c_s^2 k_h^2 = {l(l+1) c_s^2 \over r^2}\] wave angular momentum
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_l, N}\]
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[ \begin{aligned} \oint \mathbf{k} \cdot \mathrm d \mathbf{r} &= 2 \pi \left(n' - {1 \over 2}\right) \\ 2 \omega \int_0^R {\mathrm d r \over c_s} &= 2 \pi \left(n + {l \over 2} + \epsilon_l\right) \end{aligned} \]
\[\large\nu = {1 \over 2T}\left(n + {l \over 2} + \epsilon\right)\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_l}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[\large{1 \over \nu} = \Delta\Pi_l \left(n + {l \over 2} + \epsilon_{g, l}\right)\]
p-modes:
\[\large\boxed{\nu = \Delta\nu\left(n + {l \over 2} + \epsilon\right)}\]
\[\small\Delta\nu \sim \left(2 \int {\mathrm d r \over c_s}\right)^{-1}\]
g-modes:
\[\large\boxed{{1 \over \nu} = \Delta\Pi_l \left(n + {l \over 2} + \epsilon_{g, l}\right)}\]
\[\small\Delta\Pi_l \sim {2\pi^2 \over \sqrt{l(l+1)}}\left(\int {N \over r} \mathrm d r\right)^{-1}\]
← Much easier to see
in the Sun…
Others: f-modes (surface), r-modes (inertial), …
\(\ell = 0\) MDI Doppler velocities
Power spectra of MDI dopplergrams
Mode frequencies satisfy \(\nu_{nl} \sim \Delta\nu\left(n + {l \over 2} + \epsilon_l(\nu)\right) + \mathcal{O}(1/\nu)\)
Resolved imaging of the Sun gives
mode frequencies at very high \(\ell\)!
\[\vdots\]
Power spectra of MDI dopplergrams
\[ \begin{aligned} \Delta\nu &\sim \sqrt{M / R^3} \\ \nu_\text{max} &\sim M / R^2 \sqrt{T_\text{eff}} \end{aligned} \]
\[ \begin{aligned} {M \over M_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)^{3}\left(\Delta\nu \over \Delta\nu_\odot\right)^{-4} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{3/2} \\ {R \over R_\odot} &\sim \left(\nu \over \nu_{\text{max},\odot}\right)\left(\Delta\nu \over \Delta\nu_\odot\right)^{-2} \left(T_\text{eff} \over T_{\text{eff},\odot}\right)^{1/2} \end{aligned} \]
\[F: \underbrace{\left(M, t, Y_0, Z_0, \alpha_\text{mlt}, \ldots\right)}_{x \in X} \mapsto \underbrace{\left(L, T_\text{eff}, [\text{M/H}], \log g, \ldots\right)}_{y \in Y}\]
\[ \color{red} \text{and } \Delta\nu, \nu_{\text{max}}, \left\{\nu_{n,l}\right\} \]
Hare “Zebedee”, Cunha+ (incl. Ong, 2021)
Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%; {\sigma_M \over M} \lesssim 5 \% \]
Almost all rotational measurements are at the stellar
surface.
Interior rotation is much more poorly constrained.
Three quantum numbers \(n, \ell, m\): \[ \begin{aligned} \ell &= 0, 1, 2, \ldots \\ m &= -\ell, -\ell+1, \dots, \ell-1, \ell \end{aligned} \]
Zonal (\(m = 0\))
Prograde sectoral
(\(m = +\ell\))
Retrograde sectoral
(\(m = -\ell\))
Hall+ 2021: Verification of weakened-magnetic-braking hypothesis
from
ensemble asteroseismology
For slow rotation, \[\boxed{\delta\omega_{nlm} \sim m \beta_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
OLA (Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; etc.):
\[\scriptsize\begin{aligned}\sum_{i} c_i \left( \delta\omega_{\mathrm{rot}, i} \over m_i \beta_{i} \right) &\sim \int \Omega(r) \left(\sum_i c_i K_{i}(r)\right) \mathrm d r \\ & \to \boxed{\Omega(r_0)}\end{aligned}\]
In the Sun, a transition from solid-body to differential rotation at the base of the convective envelope
slow
fast
two standard
solar models
Bellinger+ 2019:
first inference of structure from
a star with a convective core.
Bellinger+ 2017: comparison of interior structure in a binary
Evolved stars dominate our asteroseismic sample!
(facultative with Kepler, obligate with TESS)
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,l} \sim \Delta\nu \left(n_p + {l \over 2} + \epsilon_{n,l}\right)\]
Pure g-modes: \[{1 \over \nu_{n,l}} \sim \Delta\Pi_l \left(n_g + {l \over 2} + \epsilon_{g, n,l}\right)\]
\[\small N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\] entropy gradient (\(=0\) in CZ)
\[\small S_l^2 = c_s^2 k_h^2 = {l(l+1) c_s^2 \over r^2}\] wave angular momentum
Over the course of post-main-sequence evolution, \(N^2\) increases dramatically —
an interior g-mode cavity develops.
(Ong & Basu 2020)
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
\[\iff\]
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]
Applications for determination of (sub)giant
structure and
properties (Ong+ 2021a, b, c), and
internal rotation
(Ong+ 2022, and 2023, in review)
We know more about giant cores
than about the core of our own Sun!
Joint posterior distributions for TOI 197
(reference values: Huber+
incl. Ong, 2019)
with one sector (27 days)
of TESS data!
(Ong+ 2021c)
Naive approach
Ong+ 2021b
Radiative core contracts dramatically off main sequence
\(\implies\) core spins up (if
conserving angular momentum)
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017, Ong+ 2022)
Core rotation rates appear not to increase significantly
as cores contract \(\implies\) angular
momentum transport?
from Mosser+ (2014)
Clustering on \(\Delta\nu\)-\(\Delta\Pi_1\) diagram:
diagnostic of core helium burning.
(RC stars = standard candles!)
Single-star electron degeneracy sequence:
deviations → merger remnants?
(Rui+ 2021, Deheuvels+ 2021)
Earth 2.0
2026 (Planned)
Evolutionary models (e.g. MESA, ASTEC) yield poor descriptions of stars with convective cores — improvements?
(e.g. Pedersen+ 2018;
Lindsay, Ong, Basu 2022;
Vanlaer+ 2023, in review)
For the Sun, even standard solar models don’t give the right frequencies!
(e.g. Ball+ 2014, 2017; Sonoi+ 2015; Roxburgh 2018;
Ong+ 2021a,c; Li+ 2022…)
Mode amplitudes are usually ignored,
but are entirely determined by turbulent convective driving.
How do we predict amplitudes of convectively excited modes?
(e.g. Philidet+ 2021, 2022; Zhou+ 2021)
We can understand stars very well by going to space,
staring at them for very long,
and blinking very fast.
Solar-like oscillations probe a very large range of
stellar structure, dynamics, and
evolution.
In many respects we are left with more questions than answers.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]