Colloquium @ IU Bloomington | Slides at http://hyad.es/talks
Joel Ong
January 27, 2023
Animation: NASA
Power spectra of MDI dopplergrams
\[ \begin{aligned} \Delta\nu &\sim \sqrt{M / R^3} \\ \nu_\text{max} &\sim M / R^2 \sqrt{T_\text{eff}} \end{aligned} \]
Mode frequencies satisfy \(\nu_{nl} \sim \Delta\nu\left(n + {l \over 2} + \epsilon_l(\nu)\right) + \mathcal{O}(1/\nu)\)
\[\huge {\partial^2 \over \partial t^2}f = c_s^2 \nabla^2 f\]
\[\huge -\omega^2 f = c_s^2 \nabla^2 f\]
\[\large \nabla^2 f = -{\omega^2 \over c_s^2} f \equiv -|\mathbf{k}|^2 f\]
Dispersion relation: \[\omega^2 = c_s^2 |\mathbf{k}|^2\]
\[\huge {\partial^2 \over \partial t^2}f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\huge -\omega^2 f = \left(c_s^2 \nabla^2 - \omega^2_\text{ac}(\mathbf{x})\right) f\]
\[\large \nabla^2 f = -\left({\omega^2 - \omega_\text{ac}^2\over c_s^2}\right) f \equiv -k^2 f\]
Wave propagates where \(k^2(r, \omega) > 0\) and decays where \(k^2(r, \omega) < 0\).
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\small\color{orange}N^2 = {- g}\left.{\partial \log \rho \over \partial s}\right|_P{\mathrm d s \over \mathrm d r}\]
\[\small\color{blue}S_l^2 = c_s^2 k_h^2 = {l(l+1) c_s^2 \over r^2}\]
\[{c_s^2 k_r^2 \sim \omega^2 \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[{\color{gray} \omega_p > S_l, N}\]
\[\Large \omega_+^2 \sim c_s^2 |\mathbf{k}|^2\]
\[ \begin{aligned} \oint \mathbf{k} \cdot \mathrm d \mathbf{r} &= 2 \pi \left(n' - {1 \over 2}\right) \\ 2 \omega \int_0^R {\mathrm d r \over c_s} &= 2 \pi \left(n + {l \over 2} + \epsilon_l\right) \end{aligned} \]
\[\large\nu = {1 \over 2T}\left(n + {l \over 2} + \epsilon\right)\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[{\color{red} \omega_g < N, S_l}\]
\[\Large \omega_-^2 \sim N^2 {k_h^2 \over |\mathbf{k}|^2}\]
\[\large{1 \over \nu} = \Delta\Pi_l \left(n + {l \over 2} + \epsilon_{g, l}\right)\]
Evolved stars dominate our asteroseismic sample!
(proxy for age \(\to\))
Mixed modes exhibit
avoided crossings
between underlying p- and g-modes.
Pure p-modes: \[\nu_{n,l} \sim \Delta\nu \left(n_p + {l \over 2} + \epsilon_{n,l}\right)\]
Pure g-modes: \[{1 \over \nu_{n,l}} \sim \Delta\Pi_l \left(n_g + {l \over 2} + \epsilon_{g, n,l}\right)\]
Over the course of post-main-sequence evolution, \(N^2\) increases dramatically —
an interior g-mode cavity develops.
\[{k_r^2 \sim {\omega^2 \over c_s^2} \left(1 - {{\color{blue} S_l}^2 \over \omega^2}\right)\left(1 - {{\color{orange}N}^2 \over \omega^2}\right)}\]
\[\tiny {\color{gray}\sin \left[\theta_p(\nu)\right] = 0};\ {\color{red}\cos \left[\theta_g(\nu)\right] = 0}\]
\[\tiny {\color{gray}\sin \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right] = 0};\ {\color{red}\cos \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right] = 0}\]
\[\tiny {\color{gray}\tan \left[\int_{r_{1,p}}^{r_{2,p}} k_r \mathrm d r\right]} {\color{red}\cot \left[\int_{r_{1,g}}^{r_{2,g}} k_r \mathrm d r\right]} = {1 \over 4} \exp \left[-2 \int_{r_{2,g}}^{r_{1,p}} |k_r| \mathrm d r\right]\]
(Coupling between oscillators)
Relationship between \((\omega_i, \alpha_i)\) and stellar structure unclear…
\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]
\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]
\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \rho_0 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\]
Mixed mode
frequencies and mixing coefficients can likewise be found by solving
the
Generalised Hermitian Eigenvalue Problem: \[
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\
\mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i},
\hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}}
= \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020; now also in GYRE v6)
Data: \(y_\text{obs} \in Y\)
Models: \(x_i \in X\);\[F: X \to Y\]
Best-fitting model: \[x = \mathop{\mathrm{argmax}}_{x_j \in X}\ \mathcal{L}\left(x_j\right)\]
\[F: \underbrace{\left(M, t, Y_0, Z_0, \alpha_\text{mlt}, \ldots\right)}_{x \in X} \mapsto \underbrace{\left(L, T_\text{eff}, [\text{M/H}], \log g, \ldots\right)}_{y \in Y}\]
\[ \color{red} \text{and } \Delta\nu, \nu_{\text{max}}, \left\{\nu_{n,l}\right\} \]
Hare “Zebedee”, Cunha+ 2021
Precise measurements of field stars: \[ {\sigma_R \over R} \lesssim 2 \%; {\sigma_M \over M} \lesssim 5 \% \]
For the Sun, even standard solar models don’t give the right frequencies!
The asteroseismic “surface term”: a (mostly) smooth function of frequency.
Consider two stars with identical \(M\) and \(R\),
differing only in the near surface layers: \[\hat{\mathcal{L}}_0\xi_{0,n} = -\omega_{0,n}^2
\xi_{0,n};~~~~\hat{\mathcal{L}}\xi_{n} = -\omega_{n}^2 \xi_{n}.\]
We write \[\hat{\mathcal{L}} =
\hat{\mathcal{L}}_0 + \lambda {\hat{\mathcal{V}}_\text{surf}},\]
so that \(\lambda\) interpolates
linearly between the two structures.
\[\Large \hat{\mathcal{V}}_\text{surf}{\color{red}\xi_\gamma} \to 0\]
\({\color{red}\gamma\text{-modes}}\)
are confined to the stellar interior,
so unaffected by surface
term
How is this compatible with a smooth function of frequency?
Mixing coefficients: customarily defined so that \(\zeta \to 1\) for pure g-modes, and \(\to 0\) for pure p-modes
\[\huge \times\]
Apply a partial correction: \(\delta\nu_\text{surf, mixed} = {\color{red} \delta\nu_\text{surf}} \times {\color{blue}(1 - \zeta)}\)
\(\delta\nu_\text{mixed} = (1 - \zeta)\delta\nu_\text{surf}\)
These two operations do not necessarily commute.
\[\tiny{\text{Numerical Experiment: Various Kepler/K2/TESS subgiants}; N = 47;\ \ell=0, 1, 2}\]
First-order approximation yields
systematically lower stellar masses!
(population-level systematic error)
(two different
correction techniques)
Almost all rotational measurements are at the stellar
surface.
Interior rotation is much more poorly constrained.
Three quantum numbers \(n, l, m\): \[ \begin{aligned} l &= 0, 1, 2, \ldots \\ m &= -l, -l+1, \ldots, l-1, l \end{aligned} \]
Zonal (\(m = 0\))
Prograde sectoral
(\(m = +l\))
Retrograde sectoral
(\(m = -l\))
For slow rotators (\(\Omega \ll 2\pi\Delta\nu\)),
\[\boxed{\delta\omega_{nlm} \sim m \beta_{nl} \int \Omega(r) K_{nl}(r) \mathrm d r}\]
(\(\equiv m \Omega \beta_{nl}\) for solid-body rotation).
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Sensitivity of pure p-modes is distributed
throughout entire stellar structure
(but concentrated at surface)
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Mixed modes probe radial differential rotation in two zones (core vs. envelope).
\[\beta_i(r) = \beta_i \int_0^r K_i(r') \mathrm d r'\]
Observed g-mixed modes probe core rotation well
(e.g. Mosser+ 2015; Gehan+ 2018)
Even the most p-dominated mixed modes
are sensitive to core rotation!
If for pure p-modes \(\delta \omega_p \sim
m \beta_p \Omega_\mathrm{env}\)
and for pure g-modes \(\delta \omega_g \sim m
\beta_g \Omega_\mathrm{core}\),
then surely for mixed modes,
\(\delta \omega_\mathrm{mixed} \sim m
\left(\zeta \beta_g \Omega_\mathrm{core} + (1 - \zeta) \beta_p
\Omega_\mathrm{env}\right)\)?
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
Existing seismic rotational measurement techniques
have considerable difficulty
simultaneously returning core and envelope rotation rates
in evolved stars.
(Ong & Basu 2020)
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]
\[\iff\]
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
Rotation gives a Quadratic Hermitian Eigenvalue
Problem
(Ong et al. 2022):
\[ \small \left(\begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + 2 m \omega {\color{forestgreen}\mathbf{R}} + \omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = 0. \]
Rotation matrices are essentially diagonal in \(\pi/\gamma\)-mode basis:
Entire matrix can may be meaningfully constrained observationally.
(this is not the case with mixed modes!)
\[ {\color{blue}\delta\omega_i} = {\color{olive}m \beta_i \int_0^R} {\color{orange}\Omega(r)} {\color{olive}K_i(r) \mathrm d r} + {\color{red}{\mathcal{O}(\Omega^2)}} \sim \sum_j {\color{olive}A_{ij}} {\color{orange}\Omega_j}. \]
\[ \text{(linear problem of the form $\mathbf{{\color{olive}A}{\color{orange}x}} = \mathbf{{\color{blue}b}}$)} \iff {\color{orange}\Omega_j} \sim \sum_i {\color{olive}A^{+}_{ji}} {\color{blue}\delta\omega_i}? \]
OLA (Backus & Gilbert 1968; Gough 1985;
Pijpers & Thompson 1992; Schunker 2016; etc.):
\[\scriptsize\begin{aligned}\sum_{i} c_i \left( \delta\omega_{\mathrm{rot}, i} \over m_i \beta_{i} \right) &\sim \int \Omega(r) \left(\sum_i c_i K_{i}(r)\right) \mathrm d r \\ & \to \boxed{\Omega(r_0)}\end{aligned}\]
Ong, Bugnet, Basu (2022):
\(\pi/\gamma\) basis of kernels has different localisation properties.
Nonmonotonic rotational profile!
(Tayar+ 2022)
Decomposition of wave operator into purely
acoustic/buoyant propagation terms and their remainder
operators
permits closed-form evaluation of coupling matrix
elements.
Ong and Basu (2020)
Traditional surface term corrections handle mode coupling
only to first order, if at all.
More sophisticated techniques are required
as stars get more evolved.
Inference of stellar masses and compositions depends on
how mode mixing is treated
when correcting for the surface term.
Ong, Basu, Roxburgh (2021); Ong, Basu, Lund, et al. (2021)
Rotational characterisation techniques which
do not work on mixed modes may still be applied
if they are decomposed into \(\pi/\gamma\) basis.
We describe how this is to be done.
Ong, Bugnet, Basu (2022)
We generalise conventional surface corrections to apply to mixed modes, by analytically decoupling mixed modes into p- and g-like components. We apply these techniques to the problem of correcting the asteroseismic surface term, and to the task of internal rotational measurement.
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]
Subgiant: \(\Delta\nu = 67.5\
\mu\text{Hz}\)
Full matrix coupling
\(\lambda\) from \(0 \to 1\)
Subgiant: \(\Delta\nu = 67.5\
\mu\text{Hz}\)
Traditional approximation to
coupling
Subgiant: \(\Delta\nu = 67.5\
\mu\text{Hz}\)
Full vs. Traditional mode coupling
Young red giant: \(\Delta\nu = 17.2\ \mu\text{Hz}\)
Evolved red giant: \(\Delta\nu = 3.9\ \mu\text{Hz}\)
Surface-term corrections
should not reorder mixed modes!
(cf. Ball+ 2018)
traditional approx. OK
perturbative series diverges
???
Ignore mixing altogether? (a la Ball et al. 2018)
\[ \left( \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} + \lambda \begin{bmatrix} {\color{blue}\mathbf{V}} & 0 \\ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \]
Does this actually change our results?
All the surface corrections yield similar best-fit models;
main discrepancies arise in the wings of the posterior distribution
EPIC212478598
Joint posterior distributions for TOI 197
(reference values: Huber+ 2019)
(Ong+ 2021c)