AAS 241
Joel Ong (IfA), Lisa Bugnet (CCA), Sarbani Basu
(Yale),
Emily Hatt (Birmingham), Martin Nielsen (Birmingham)
12 January 2023
Almost all rotational measurements are at the stellar
surface.
Interior rotation is much more poorly constrained.
(sun-like star)
Spectroscopic \(v \sin i\):
\(\sim \text{PHz}\) regime \(\to\)
Photometric \(P_\text{rot}\):
\(\ll 1\ \mu\text{Hz}\)
\(\downarrow\)
p-modes: \[ \nu \sim \Delta\nu \left(n + {\ell \over 2} + \epsilon_p\right) \]
g-modes: \[ {1 \over \nu} \sim \Delta\Pi_l \left(n + {\ell \over 2} + \epsilon_g\right) \]
Mixed modes:
\[ \tan \pi\left(\nu - \nu_p \over \Delta\nu\right) \tan \pi \left({1 \over \nu_g} - {1 \over \nu} \over \Delta\Pi_l\right) \sim q(\nu) \]
Mode mixing yields avoided crossings
between multiplet components of identical \(m\)
(cf. Mosser+ 2012, Ouazzani+ 2013, Deheuvels+ 2017)
\[\small\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}\]
\[\iff\]
\[\small\vec{\xi}_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \vec{\xi}_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \vec{\xi}_{\gamma,j}}\]
(Ong & Basu 2020)
Ong, Bugnet & Basu (2022):
generalisation to include rotational effects
\[ CCF(C_\text{mag}, \delta\nu_\text{rot}) = \int \mathrm{PS}(\nu) \cdot \sum_j \delta(\nu - \tau^{-1}(\nu_j - m \delta\nu_\text{rot})) \mathrm d \nu \]
Construction of likelihood functions directly against the power spectrum permits rotational and other astrophysical properties of evolved stars to be inferred without conventional peakbagging
\[\mathrm{j}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\ \text{@}\ \text{hawaii}.\text{edu}\]