Aarhus University
Joel Ong
February 11 2021 | Slides at http://hyad.es/talks
Animation: NASA
Data: \(y_\text{obs} \in Y\)
Models: \(x_i \in X\);\[F: X \to Y\]
Best-fitting model: \[x = \mathop{\mathrm{argmax}}_{x_j \in X}\mathcal{L}\left(x_j\right)\]
\[F: \underbrace{\left(M, t, Y_0, Z_0, \alpha_\text{mlt}, \ldots\right)}_{x \in X} \mapsto \underbrace{\left(L, T_\text{eff}, [\text{M/H}], \log g, \ldots\right)}_{y \in Y}\]
Power spectra of MDI dopplergrams
\[F: \left(M, t, Y_0, Z_0, \alpha_\text{mlt}, \ldots\right) \mapsto \left(L, T_\text{eff}, [\text{M/H}], \log g, \color{blue}{\Delta\nu, \nu_\text{max}, \left\{\nu_{nl}\right\}}\right)\]
For the Sun, even standard solar models don’t give the right frequencies!
\[\nu_\text{model} \mapsto \nu_\text{corr} = \nu_\text{model} + \delta\nu_{nl,\text{surf}},\] with corrections depending only on the model as \(\delta\nu_{nl,\text{surf}} \sim f(\nu_{nl}; x)\).
Corrections with free parameters \(\theta \in \Theta\) as \(\delta\nu_{nl,\text{surf}} \sim f(\nu_{nl}; x; \theta)\).
\[\tiny {\text{e.g. Ball \& Gizon (2014) correction: }\delta\nu_{nl,\text{surf}} \sim \left(a_{-1} \left(\nu_{nl}\right)^{-1} + a_{3} \left(\nu_{nl}\right)^{3}\right) / I_{nl}}\]
\[\begin{aligned} \text{e.g. } r_{02, n} = {\nu_{n,0} - \nu_{n-1,2} \over \nu_{n,1} - \nu_{n-1,1}} \end{aligned}\]
Interpretation as surface-independent functions of frequency:
use these to constrain model directly (Otí Floranes et al. 2005)
\[\begin{aligned} r_{02, n} & \sim \delta_2(\nu_{n,0})\\ r_{01, n} \sim \delta_1(\nu_{n,0})&; ~~~ r_{10, n} \sim \delta_1(\nu_{n,1}) \end{aligned}\]
\[\nu_{nl} \sim \Delta\nu\left(n + {l \over 2} + \epsilon_{nl}\right), \implies \epsilon_{nl} = {\nu_{nl} \over \Delta\nu} - n - {l \over 2} \equiv{\epsilon_l(\nu_{nl})}\] \[ \text{Compute } \mathcal{E}_l(\nu^\text{obs}_{nl}) = \epsilon^\text{obs}_{l}(\nu^\text{obs}_{nl}) - \epsilon^\text{model}_{l}(\nu^\text{obs}_{nl}). \]
All of the \(\mathcal{E}_l\) should collapse to a single function if the structural differences are localised to the surface (Roxburgh 2016).
Use of transformed variables such that \[O_{nl,\text{surf}} \sim f(\nu_{nl})\]
(where the structure of \(f\) is left underspecified)
Interpolation required to compare
\(f^\text{obs}(\nu_\text{obs})\) vs. \(f^\text{model}(\nu_\text{obs})\) (instead of \(f^\text{model}(\nu_\text{model})\)).
For each parameter \(P\), we consider normalised differences \[z_{P, \text{BG14 vs. other}} = {\mu_{P, \text{other}} - \mu_{P, \text{BG14}} \over \sqrt{\sigma^2_{P, \text{BG14}} + \sigma^2_{P, \text{other}}}}\]
We examine the distribution of these differences
over a large* sample of stars, ceteris paribus
*Not actually very large
Main-sequence stars
\[\tiny{(\text{Kepler LEGACY sample}: N = 66)}\]
General agreement on the
inferred masses…
\(z\)-score for mass
…and on the inferred radii.
\(z\)-score for radius
Parameter estimates generally
agree quite robustly…
\(z\)-score for age
… but not for all parameters.
\(z\)-score for initial helium abundance
First-ascent red giants
\[\tiny{(\text{NGC 6791}: N = 29; l=0,2\text{ only})}\]
Nonparametric methods appear
to agree with each other…
\(z\)-score for initial helium abundance
…but not with our
fiducial parameterisation…
\(z\)-score for mass
…and these offsets appear
to be systematic.
\(z\)-score for age
NGC 6791 is an open cluster — what about the
actual distribution of stellar properties?
Stars should be coeval, so red giants should be of similar mass and age.
Disagreements on the age scale?
Disagreements on the mass distribution?
Other parametric methods yield comparable internal scatter!
Different treatments of the surface term exhibit qualitative systematic differences for main-sequence stars vs. red giants.
What happens in between?
\[\Large \hat H \psi_n = \left(\hat T + \hat V\right)\psi_n = E_n \psi_n\]
\[\large {\color{blue}{\hat H_1}} \psi_n = \left(\hat T + \hat V_1\right)\psi_n = {\color{blue}E_n \psi_n}\]
\[\large {\color{orange}{\hat H_2}} \psi_n = \left(\hat T + \hat V_2\right)\psi_n = {\color{orange}E_n \psi_n}\]
\[\huge \hat H = \hat T + \hat V_1 + \hat V_2 = {\color{blue}{\hat H_1}} + \hat V_2 = \hat V_1 + {\color{orange}{\hat H_2}}\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} + {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 - \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\Large\psi \sim {1 \over \sqrt{2}} \left({\color{blue}\psi_1} - {\color{orange}\psi_2}\right)\] \[\Large E \sim E_1 + \left|\int {\color{blue}\psi_1^*} \hat H {\color{orange}\psi_2}\ \mathrm dV\right|\]
\[\psi_\text{mol} = {\color{blue}\sum_i c_{1,i} \psi_{1,i}} + {\color{orange}\sum_j c_{2,j} \psi_{2,j}}.\]
Energy eigenvalues and mixing coefficients are solutions to the
Generalised Hermitian Eigenvalue Problem
\[ \mathbf{H} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} = E \cdot \mathbf{D} \begin{bmatrix} {\color{blue}\mathbf{c}_1} \\ {\color{orange}\mathbf{c}_2} \end{bmatrix} \] \[ \small H_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|\hat{H}|{\color{orange}\psi_j}\rangle;~~~~D_{{\color{blue}i}{\color{orange}j}} = \langle {\color{blue}\psi_i}|{\color{orange}\psi_j}\rangle \]
\[\Large \hat{\mathcal{L}} \xi_n = -\omega_n^2 \xi_n\]
\[\Large \hat{\mathcal{L}} = {\color{red}\hat{\mathcal{L}}_\gamma} + \hat{\mathcal{R}}_\gamma\]
\[\Large {\color{red}\hat{\mathcal{L}}_\gamma \xi_{\gamma,n} = -\omega^2_{\gamma,n}\xi_{\gamma,n}}\]
\[\Large \hat{\mathcal{L}} = \hat{\mathcal{R}}_\pi + {\color{grey}\hat{\mathcal{L}}_\pi}\]
\[\Large {\color{grey}\hat{\mathcal{L}}_\pi \xi_{\pi,n} = -\omega^2_{\pi,n}\xi_{\pi,n}}\]
\[\Large \hat{\mathcal{L}} = {\color{grey}\hat{\mathcal{L}}_\pi} + \hat{\mathcal{R}}_\pi = \hat{\mathcal{R}}_\gamma + {\color{red}\hat{\mathcal{L}}_\gamma}\]
\[\Large \xi_\text{mixed} \sim {\color{grey}c_\pi \xi_\pi} + {\color{red}c_\gamma \xi_\gamma}\]
\[\xi_\text{mixed} \sim {\color{grey} \sum_i c_{\pi, i} \xi_{\pi,i}} + {\color{red} \sum_j c_{\gamma, j} \xi_{\gamma,j}}\] Mixed mode frequencies and mixing coefficients can likewise be found by solving the
Generalised Hermitian Eigenvalue Problem: \[
\begin{bmatrix}
{\color{grey}\mathbf{L}_{\pi\pi}} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}
= -\omega^2 \begin{bmatrix}
\mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1}
\end{bmatrix}
\begin{bmatrix}
{\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma}
\end{bmatrix}.
\] \[
\small
L_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, \hat{\mathcal{L}}{\color{red}\xi_j}\rangle;~~~~D_{{\color{grey}i}{\color{red}j}} = \langle {\color{grey}\xi_i}, {\color{red}\xi_j}\rangle
\]
(Ong & Basu 2020)
Consider two stars with identical \(M\) and \(R\),
differing only in the near surface layers: \[\hat{\mathcal{L}}_0\xi_{0,n} = -\omega_{0,n}^2 \xi_{0,n};~~~~\hat{\mathcal{L}}\xi_{n} = -\omega_{n}^2 \xi_{n}.\] We write \[\hat{\mathcal{L}} = \hat{\mathcal{L}}_0 + \lambda {\hat{\mathcal{V}}},\] so that \(\lambda\) interpolates linearly between the two structures.
\[\Large \hat{\mathcal{V}}{\color{red}\xi_\gamma} \to 0\]
\({\color{red}\gamma\text{-modes}}\) are confined to the stellar interior,
so unaffected by surface term
These two operations do not necessarily commute.
Subgiant: \(\Delta\nu = 67.5\ \mu\text{Hz}\)
Full matrix coupling
Subgiant: \(\Delta\nu = 67.5\ \mu\text{Hz}\)
Traditional approximation to coupling
Subgiant: \(\Delta\nu = 67.5\ \mu\text{Hz}\)
Young red giant: \(\Delta\nu = 17.2\ \mu\text{Hz}\)
Evolved red giant: \(\Delta\nu = 3.9\ \mu\text{Hz}\)
traditional approx. OK
perturbative series diverges
???
Ignore mixing altogether? (a la Ball et al. 2018)
e.g. Measuring \(Y_0\) from the TESS CVZs
Nonparametric treatments of the surface term may yield
qualitatively different results from parametric ones,
particularly for measuring \(Y_0\), and for evolved red giants.
Ong, Basu, McKeever (2021)
Decomposition of wave operator into purely acoustic/buoyant propagation terms and their remainder operators
permits closed-form evaluation of coupling matrix elements.
Ong and Basu (2020)
Traditional surface term corrections handle mode coupling
only to first order, if at all.
More sophisticated techniques are required
as stars get more evolved.
Ong, Basu, Roxburgh (in prep.)
Ong, Basu, Lund, Viani, Bieryla, Latham (in prep.)
The surface term behaves differently on red giants vs. main-sequence stars. To study its behaviour in the intermediate regime, in subgiants, we must generalise conventional surface corrections to apply to mixed modes. We do this by analytically decoupling mixed modes into \(\pi\)- and \(\gamma\)-like components.
From operator perturbation problem, \(\hat{\mathcal{L}} = \hat{\mathcal{L}}_0 + \lambda {\hat{\mathcal{V}}},\) construct corresponding matrix perturbation problem by evaluating \[V_{ij} = \int \rho\ \vec{\xi}_{\pi,i} \cdot \hat{\mathcal{V}}\vec{\xi}_{\pi,j}\ \mathrm d^3 x.\]
\[\text{``Variational" expression: }\delta\omega_i^2 \sim {\int \rho\ \vec \xi_i\ \delta\hat{\mathcal{L}} (\vec \xi_i)\ \mathrm d^3 x \over \int \rho\ |\vec \xi_i|^2\ \mathrm d^3 x}\]
So long as the off-diagonal entries of the matrix \(\mathbf{V}\) can be specified, existing parametrisations can adapted as (e.g. for BG14): \[ \large \begin{bmatrix} {\color{grey}\mathbf{L}_{\pi\pi}} + \mathbf{V}_{(a_{-1}, a_{3})} & \mathbf{L}_{\pi\gamma} \\ \mathbf{L}_{\pi\gamma}^T & {\color{red}\mathbf{L}_{\gamma\gamma}} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix} = -\omega^2 \begin{bmatrix} \mathbb{1} & \mathbf{D} \\ \mathbf{D}^T & \mathbb{1} \end{bmatrix} \begin{bmatrix} {\color{grey}\mathbf{c}_\pi} \\ {\color{red}\mathbf{c}_\gamma} \end{bmatrix}. \]